Abstract

We report a new design for a Faraday effect current sensor based on yttrium iron garnet that has substantially greater bandwidth than previous designs and is much easier to fabricate. The measured sensitivity is 0.7°/A, with a −3-dB bandwidth of 500 MHz, which gives an improvement in sensitivity–bandwidth product of approximately 45. A noise-equivalent current of 840 nA/Hz1/2 was measured at 1.8 kHz by difference-over-sum processing. The use of turning prisms with phase-preserving coatings greatly simplifies construction, improves electrical isolation, and increases sensitivity through proximity effects.

© 1994 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. H. Rose, M. N. Deeter, G. W. Day, Opt. Lett. 18, 1471 (1993).
    [CrossRef] [PubMed]
  2. A. D. Kersey, F. Bucholtz, A. Dandridge, Int. J. Optoelectron. 3, 323 (1988).
  3. G. W. Day, A. H. Rose, Proc. Soc. Photo-Opt. Instrum. Eng. 985, 138 (1988).
  4. G. W. Day, M. N. Deeter, A. H. Rose, in Advances in Optical Fiber Sensors, B. Culshaw, E. L. Moore, Z. Zhipeng, eds. (Society of Photo-Optical Instrumentation Engineers, Bellingham, Wash., 1992).
  5. See, e.g., Y. N. Ning, B. C. B. Chu, D. A. Jackson, Opt. Lett. 16, 1996 (1991).
    [CrossRef] [PubMed]
  6. P. G. Kard, Opt. Spectrosc. (USSR) 6, 339 (1959).
  7. E. Spiller, Appl. Opt. 23, 3544 (1984).
    [CrossRef] [PubMed]
  8. M. N. Deeter, A. H. Rose, G. W. Day, J. Lightwave Technol. 8, 1838 (1990).
    [CrossRef]
  9. D. Chen, J. A. Brug, R. B. Goldfarb, IEEE Trans. Magn. 27, 3601 (1991).
    [CrossRef]
  10. M. N. Deeter, A. H. Rose, G. W. Day, S. Samuelson, J. Appl. Phys. 70, 6407 (1991).
    [CrossRef]
  11. R. L. Patterson, A. H. Rose, D. Tang, G. W. Day, in Proceedings of the 25th Intersociety Energy Conversion Engineering Conference, P. A. Nelson, W. W. Schertz, R. H. Till, eds. (American Institute of Chemical Engineers, New York, 1990), p. 500.
    [CrossRef]

1993

1991

D. Chen, J. A. Brug, R. B. Goldfarb, IEEE Trans. Magn. 27, 3601 (1991).
[CrossRef]

M. N. Deeter, A. H. Rose, G. W. Day, S. Samuelson, J. Appl. Phys. 70, 6407 (1991).
[CrossRef]

See, e.g., Y. N. Ning, B. C. B. Chu, D. A. Jackson, Opt. Lett. 16, 1996 (1991).
[CrossRef] [PubMed]

1990

M. N. Deeter, A. H. Rose, G. W. Day, J. Lightwave Technol. 8, 1838 (1990).
[CrossRef]

1988

A. D. Kersey, F. Bucholtz, A. Dandridge, Int. J. Optoelectron. 3, 323 (1988).

G. W. Day, A. H. Rose, Proc. Soc. Photo-Opt. Instrum. Eng. 985, 138 (1988).

1984

1959

P. G. Kard, Opt. Spectrosc. (USSR) 6, 339 (1959).

Brug, J. A.

D. Chen, J. A. Brug, R. B. Goldfarb, IEEE Trans. Magn. 27, 3601 (1991).
[CrossRef]

Bucholtz, F.

A. D. Kersey, F. Bucholtz, A. Dandridge, Int. J. Optoelectron. 3, 323 (1988).

Chen, D.

D. Chen, J. A. Brug, R. B. Goldfarb, IEEE Trans. Magn. 27, 3601 (1991).
[CrossRef]

Chu, B. C. B.

Dandridge, A.

A. D. Kersey, F. Bucholtz, A. Dandridge, Int. J. Optoelectron. 3, 323 (1988).

Day, G. W.

A. H. Rose, M. N. Deeter, G. W. Day, Opt. Lett. 18, 1471 (1993).
[CrossRef] [PubMed]

M. N. Deeter, A. H. Rose, G. W. Day, S. Samuelson, J. Appl. Phys. 70, 6407 (1991).
[CrossRef]

M. N. Deeter, A. H. Rose, G. W. Day, J. Lightwave Technol. 8, 1838 (1990).
[CrossRef]

G. W. Day, A. H. Rose, Proc. Soc. Photo-Opt. Instrum. Eng. 985, 138 (1988).

G. W. Day, M. N. Deeter, A. H. Rose, in Advances in Optical Fiber Sensors, B. Culshaw, E. L. Moore, Z. Zhipeng, eds. (Society of Photo-Optical Instrumentation Engineers, Bellingham, Wash., 1992).

R. L. Patterson, A. H. Rose, D. Tang, G. W. Day, in Proceedings of the 25th Intersociety Energy Conversion Engineering Conference, P. A. Nelson, W. W. Schertz, R. H. Till, eds. (American Institute of Chemical Engineers, New York, 1990), p. 500.
[CrossRef]

Deeter, M. N.

A. H. Rose, M. N. Deeter, G. W. Day, Opt. Lett. 18, 1471 (1993).
[CrossRef] [PubMed]

M. N. Deeter, A. H. Rose, G. W. Day, S. Samuelson, J. Appl. Phys. 70, 6407 (1991).
[CrossRef]

M. N. Deeter, A. H. Rose, G. W. Day, J. Lightwave Technol. 8, 1838 (1990).
[CrossRef]

G. W. Day, M. N. Deeter, A. H. Rose, in Advances in Optical Fiber Sensors, B. Culshaw, E. L. Moore, Z. Zhipeng, eds. (Society of Photo-Optical Instrumentation Engineers, Bellingham, Wash., 1992).

Goldfarb, R. B.

D. Chen, J. A. Brug, R. B. Goldfarb, IEEE Trans. Magn. 27, 3601 (1991).
[CrossRef]

Jackson, D. A.

Kard, P. G.

P. G. Kard, Opt. Spectrosc. (USSR) 6, 339 (1959).

Kersey, A. D.

A. D. Kersey, F. Bucholtz, A. Dandridge, Int. J. Optoelectron. 3, 323 (1988).

Ning, Y. N.

Patterson, R. L.

R. L. Patterson, A. H. Rose, D. Tang, G. W. Day, in Proceedings of the 25th Intersociety Energy Conversion Engineering Conference, P. A. Nelson, W. W. Schertz, R. H. Till, eds. (American Institute of Chemical Engineers, New York, 1990), p. 500.
[CrossRef]

Rose, A. H.

A. H. Rose, M. N. Deeter, G. W. Day, Opt. Lett. 18, 1471 (1993).
[CrossRef] [PubMed]

M. N. Deeter, A. H. Rose, G. W. Day, S. Samuelson, J. Appl. Phys. 70, 6407 (1991).
[CrossRef]

M. N. Deeter, A. H. Rose, G. W. Day, J. Lightwave Technol. 8, 1838 (1990).
[CrossRef]

G. W. Day, A. H. Rose, Proc. Soc. Photo-Opt. Instrum. Eng. 985, 138 (1988).

G. W. Day, M. N. Deeter, A. H. Rose, in Advances in Optical Fiber Sensors, B. Culshaw, E. L. Moore, Z. Zhipeng, eds. (Society of Photo-Optical Instrumentation Engineers, Bellingham, Wash., 1992).

R. L. Patterson, A. H. Rose, D. Tang, G. W. Day, in Proceedings of the 25th Intersociety Energy Conversion Engineering Conference, P. A. Nelson, W. W. Schertz, R. H. Till, eds. (American Institute of Chemical Engineers, New York, 1990), p. 500.
[CrossRef]

Samuelson, S.

M. N. Deeter, A. H. Rose, G. W. Day, S. Samuelson, J. Appl. Phys. 70, 6407 (1991).
[CrossRef]

Spiller, E.

Tang, D.

R. L. Patterson, A. H. Rose, D. Tang, G. W. Day, in Proceedings of the 25th Intersociety Energy Conversion Engineering Conference, P. A. Nelson, W. W. Schertz, R. H. Till, eds. (American Institute of Chemical Engineers, New York, 1990), p. 500.
[CrossRef]

Appl. Opt.

IEEE Trans. Magn.

D. Chen, J. A. Brug, R. B. Goldfarb, IEEE Trans. Magn. 27, 3601 (1991).
[CrossRef]

Int. J. Optoelectron.

A. D. Kersey, F. Bucholtz, A. Dandridge, Int. J. Optoelectron. 3, 323 (1988).

J. Appl. Phys.

M. N. Deeter, A. H. Rose, G. W. Day, S. Samuelson, J. Appl. Phys. 70, 6407 (1991).
[CrossRef]

J. Lightwave Technol.

M. N. Deeter, A. H. Rose, G. W. Day, J. Lightwave Technol. 8, 1838 (1990).
[CrossRef]

Opt. Lett.

Opt. Spectrosc.

P. G. Kard, Opt. Spectrosc. (USSR) 6, 339 (1959).

Proc. Soc. Photo-Opt. Instrum. Eng.

G. W. Day, A. H. Rose, Proc. Soc. Photo-Opt. Instrum. Eng. 985, 138 (1988).

Other

G. W. Day, M. N. Deeter, A. H. Rose, in Advances in Optical Fiber Sensors, B. Culshaw, E. L. Moore, Z. Zhipeng, eds. (Society of Photo-Optical Instrumentation Engineers, Bellingham, Wash., 1992).

R. L. Patterson, A. H. Rose, D. Tang, G. W. Day, in Proceedings of the 25th Intersociety Energy Conversion Engineering Conference, P. A. Nelson, W. W. Schertz, R. H. Till, eds. (American Institute of Chemical Engineers, New York, 1990), p. 500.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Photograph of the actual YIG current sensor. The device measures 6.5 mm × 6.5 mm × 2 mm, with an inner aperture that can accommodate a conductor as large as 2.4 mm in diameter.

Fig. 2
Fig. 2

Difference-over-sum output spectrum for the YIG current sensor excited with a 1-mA rms current at 1.8 kHz.

Fig. 3
Fig. 3

Normalized frequency response of the YIG current sensor.

Fig. 4
Fig. 4

Response of the YIG sensor to a 9-ns FWHM current.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

F = cos ( 3 δ ) + cos ( 2 δ ) + cos ( δ ) + 1 4

Metrics