Abstract

Three-dimensional optical vortex solitons were created when a Gaussian beam containing a pair of off-axis screw dislocations propagated through a self-defocusing medium. We demonstrate rotation of the solitons around the beam axis by 90° as the nonlinearity is increased.

© 1994 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. See, for example, Yu. S. Kivshar, IEEE J. Quantum Electron. 29, 250 (1993), and references therein.
    [CrossRef]
  2. B. Luther-Davies, X. Yang, Opt. Lett. 17, 496, 1755 (1992).
    [CrossRef] [PubMed]
  3. A. W. Snyder, L. Poladian, D. J. Mitchell, Opt. Lett. 17, 789 (1992).
    [CrossRef] [PubMed]
  4. N. R. Heckenberg, R. McDuff, C. P. Smith, A. G. White, Opt. Lett. 17, 221 (1992).
    [CrossRef] [PubMed]
  5. G. A. Swartzlander, C. T. Law, Phys. Rev. Lett. 69, 2503 (1992).
    [CrossRef] [PubMed]
  6. G. Idebetouw, J. Mod. Opt. 40, 73 (1993).
    [CrossRef]
  7. I. V. Basistiy, V. Yu. Bazhenov, M. S. Soskin, M. V. Vasnetsov, Opt. Commun. 103, 422 (1993).
    [CrossRef]
  8. G. S. McDonald, K. S. Syed, W. J. Firth, Opt. Commun. 94, 469 (1992).
    [CrossRef]
  9. See, for example, V. S. Butylkin, S. E. Kaplan, Yu. G. Khronopulo, E. I. Yakubovich, Resonant Nonlinear Interactions of Light with Matter (Springer-Verlag, Berlin, 1989), p. 272.
  10. J. E. Bjorkholm, A. Ashkin, Phys. Rev. Lett. 32, 129 (1974); G. A. Swartzlander, H. Yin, S. E. Kaplan, Opt. Lett. 13, 1011 (1988).
    [CrossRef] [PubMed]
  11. D. H. Close, Phys. Rev. 153, 360 (1967); G. A. Swartzlander, H. Yin, S. E. Kaplan, J. Opt. Soc. Am. B 6, 1317 (1989).
    [CrossRef]

1993 (3)

See, for example, Yu. S. Kivshar, IEEE J. Quantum Electron. 29, 250 (1993), and references therein.
[CrossRef]

G. Idebetouw, J. Mod. Opt. 40, 73 (1993).
[CrossRef]

I. V. Basistiy, V. Yu. Bazhenov, M. S. Soskin, M. V. Vasnetsov, Opt. Commun. 103, 422 (1993).
[CrossRef]

1992 (5)

G. S. McDonald, K. S. Syed, W. J. Firth, Opt. Commun. 94, 469 (1992).
[CrossRef]

B. Luther-Davies, X. Yang, Opt. Lett. 17, 496, 1755 (1992).
[CrossRef] [PubMed]

A. W. Snyder, L. Poladian, D. J. Mitchell, Opt. Lett. 17, 789 (1992).
[CrossRef] [PubMed]

N. R. Heckenberg, R. McDuff, C. P. Smith, A. G. White, Opt. Lett. 17, 221 (1992).
[CrossRef] [PubMed]

G. A. Swartzlander, C. T. Law, Phys. Rev. Lett. 69, 2503 (1992).
[CrossRef] [PubMed]

1974 (1)

J. E. Bjorkholm, A. Ashkin, Phys. Rev. Lett. 32, 129 (1974); G. A. Swartzlander, H. Yin, S. E. Kaplan, Opt. Lett. 13, 1011 (1988).
[CrossRef] [PubMed]

1967 (1)

D. H. Close, Phys. Rev. 153, 360 (1967); G. A. Swartzlander, H. Yin, S. E. Kaplan, J. Opt. Soc. Am. B 6, 1317 (1989).
[CrossRef]

Ashkin, A.

J. E. Bjorkholm, A. Ashkin, Phys. Rev. Lett. 32, 129 (1974); G. A. Swartzlander, H. Yin, S. E. Kaplan, Opt. Lett. 13, 1011 (1988).
[CrossRef] [PubMed]

Basistiy, I. V.

I. V. Basistiy, V. Yu. Bazhenov, M. S. Soskin, M. V. Vasnetsov, Opt. Commun. 103, 422 (1993).
[CrossRef]

Bazhenov, V. Yu.

I. V. Basistiy, V. Yu. Bazhenov, M. S. Soskin, M. V. Vasnetsov, Opt. Commun. 103, 422 (1993).
[CrossRef]

Bjorkholm, J. E.

J. E. Bjorkholm, A. Ashkin, Phys. Rev. Lett. 32, 129 (1974); G. A. Swartzlander, H. Yin, S. E. Kaplan, Opt. Lett. 13, 1011 (1988).
[CrossRef] [PubMed]

Butylkin, V. S.

See, for example, V. S. Butylkin, S. E. Kaplan, Yu. G. Khronopulo, E. I. Yakubovich, Resonant Nonlinear Interactions of Light with Matter (Springer-Verlag, Berlin, 1989), p. 272.

Close, D. H.

D. H. Close, Phys. Rev. 153, 360 (1967); G. A. Swartzlander, H. Yin, S. E. Kaplan, J. Opt. Soc. Am. B 6, 1317 (1989).
[CrossRef]

Firth, W. J.

G. S. McDonald, K. S. Syed, W. J. Firth, Opt. Commun. 94, 469 (1992).
[CrossRef]

Heckenberg, N. R.

Idebetouw, G.

G. Idebetouw, J. Mod. Opt. 40, 73 (1993).
[CrossRef]

Kaplan, S. E.

See, for example, V. S. Butylkin, S. E. Kaplan, Yu. G. Khronopulo, E. I. Yakubovich, Resonant Nonlinear Interactions of Light with Matter (Springer-Verlag, Berlin, 1989), p. 272.

Khronopulo, Yu. G.

See, for example, V. S. Butylkin, S. E. Kaplan, Yu. G. Khronopulo, E. I. Yakubovich, Resonant Nonlinear Interactions of Light with Matter (Springer-Verlag, Berlin, 1989), p. 272.

Kivshar, Yu. S.

See, for example, Yu. S. Kivshar, IEEE J. Quantum Electron. 29, 250 (1993), and references therein.
[CrossRef]

Law, C. T.

G. A. Swartzlander, C. T. Law, Phys. Rev. Lett. 69, 2503 (1992).
[CrossRef] [PubMed]

Luther-Davies, B.

B. Luther-Davies, X. Yang, Opt. Lett. 17, 496, 1755 (1992).
[CrossRef] [PubMed]

McDonald, G. S.

G. S. McDonald, K. S. Syed, W. J. Firth, Opt. Commun. 94, 469 (1992).
[CrossRef]

McDuff, R.

Mitchell, D. J.

Poladian, L.

Smith, C. P.

Snyder, A. W.

Soskin, M. S.

I. V. Basistiy, V. Yu. Bazhenov, M. S. Soskin, M. V. Vasnetsov, Opt. Commun. 103, 422 (1993).
[CrossRef]

Swartzlander, G. A.

G. A. Swartzlander, C. T. Law, Phys. Rev. Lett. 69, 2503 (1992).
[CrossRef] [PubMed]

Syed, K. S.

G. S. McDonald, K. S. Syed, W. J. Firth, Opt. Commun. 94, 469 (1992).
[CrossRef]

Vasnetsov, M. V.

I. V. Basistiy, V. Yu. Bazhenov, M. S. Soskin, M. V. Vasnetsov, Opt. Commun. 103, 422 (1993).
[CrossRef]

White, A. G.

Yakubovich, E. I.

See, for example, V. S. Butylkin, S. E. Kaplan, Yu. G. Khronopulo, E. I. Yakubovich, Resonant Nonlinear Interactions of Light with Matter (Springer-Verlag, Berlin, 1989), p. 272.

Yang, X.

B. Luther-Davies, X. Yang, Opt. Lett. 17, 496, 1755 (1992).
[CrossRef] [PubMed]

IEEE J. Quantum Electron. (1)

See, for example, Yu. S. Kivshar, IEEE J. Quantum Electron. 29, 250 (1993), and references therein.
[CrossRef]

J. Mod. Opt. (1)

G. Idebetouw, J. Mod. Opt. 40, 73 (1993).
[CrossRef]

Opt. Commun. (2)

I. V. Basistiy, V. Yu. Bazhenov, M. S. Soskin, M. V. Vasnetsov, Opt. Commun. 103, 422 (1993).
[CrossRef]

G. S. McDonald, K. S. Syed, W. J. Firth, Opt. Commun. 94, 469 (1992).
[CrossRef]

Opt. Lett. (3)

Phys. Rev. (1)

D. H. Close, Phys. Rev. 153, 360 (1967); G. A. Swartzlander, H. Yin, S. E. Kaplan, J. Opt. Soc. Am. B 6, 1317 (1989).
[CrossRef]

Phys. Rev. Lett. (2)

J. E. Bjorkholm, A. Ashkin, Phys. Rev. Lett. 32, 129 (1974); G. A. Swartzlander, H. Yin, S. E. Kaplan, Opt. Lett. 13, 1011 (1988).
[CrossRef] [PubMed]

G. A. Swartzlander, C. T. Law, Phys. Rev. Lett. 69, 2503 (1992).
[CrossRef] [PubMed]

Other (1)

See, for example, V. S. Butylkin, S. E. Kaplan, Yu. G. Khronopulo, E. I. Yakubovich, Resonant Nonlinear Interactions of Light with Matter (Springer-Verlag, Berlin, 1989), p. 272.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Evolution of the beam radius and 3D soliton rotation with propagation distance inside the nonlinear medium. The filled squares are the experimental data obtained in the linear propagation regime. The long-dashed and the solid curves are the variation of the rotation angle for the input intensities I0 = 0 and I0 = 1W cm−2, respectively. The short-dashed and dotted-dashed curves are the variation of the beam radius for the input intensities I0 = 0 and I0 = 1W cm−2, respectively. For these calculations n2 = 5 × 10−7 cm2/W and γ = 0.2.

Fig. 2
Fig. 2

Demonstration of; the clockwise rotation of a pair of off-axis 3D solitons after propagation through the 20-cm-long Rb vapor cell. The Rb concentration was 0.8 × 1012 cm−3, the laser detuning from Rb 5S−5P3/2 (F = 2–3) resonance was −0.75 GHz, and the input beam intensities in units of watts per square centimeter were (a) 0.12, (b) 0.15, (c) 0.24, (d) 0.3, (e) 0.4, (f) 0.5, (g) 0.8, (h) 1.

Fig. 3
Fig. 3

Variation of the rotation angle of the solitons with input beam intensity. The filled squares are the experimental data obtained for the detuning Δν = −0.75 GHz from the 5S−5P3/2 (F = 2−3) Rb atomic resonance with a Rb-vapor concentration of ≈1 × 1012. Also shown are the predictions of the model described in the text for γ = 0.2 and n2 = −10−7 (short-dashed curve), −10−5 (dotted-dashed curve), −10−4 (long-dashed curve), and −5 × 10−7 cm2/W (solid curve).

Fig. 4
Fig. 4

Measured rotation of the solitons versus laser frequency detuning from the 5S−5P3/2 (F = 2–3) resonance of the Rb atom. The Rb concentration was ≈0.2 × 1012 cm−3, and the beam intensity was 1 W cm−2. The zero detuning corresponds to the exact resonance. The 180° rotation angle corresponds to the linear propagation case.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

f 3 d 2 f d z 2 = z R 2 R nl 2 exp ( γ z ) .
d ϕ d z d d z [ arctan ( z / z R ) ] = 2 k 0 r 2 ( z ) .

Metrics