Abstract

We demonstrate a new technique for dispersion compensation in Kerr-lens mode-locked (KLM) lasers that uses a novel resonator design in conjunction with a prismatic end mirror. This approach achieves intracavity dispersion compensation without the need for prism pairs or dispersion-compensating mirrors. A pulse-repetition rate of 1 GHz, to our knowledge the highest repetition rate achieved in a KLM laser to data, is generated with a pulse durations of 111 fs. Pulse durations of 54 fs are achieved at a repetition rate of 385 MHz. We believe that this new dispersion-compensation technique will be useful for the development of compact femtosecond sources.

© 1994 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. E. Spence, P. N. Kean, W. Sibbett, Opt. Lett. 16, 42 (1991).
    [CrossRef] [PubMed]
  2. L. Spinelli, B. Couillaud, N. Goldblatt, D. K. Negus, in Conference on Lasers and Electro-Optics, Vol. 10 of 1991 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1991), paper CPDP7.
  3. A. Stingl, Ch. Spielmann, F. Krausz, R. Szipöcs, Opt. Lett. 19, 204 (1994).
    [CrossRef] [PubMed]
  4. R. Szipöcs, K. Ferencz, C. Spielmann, F. Krausz, Opt. Lett. 19, 201 (1994).
    [CrossRef] [PubMed]
  5. O. E. Martinez, IEEE J. Quantum Electron. 25, 296 (1989).
    [CrossRef]
  6. A. G. Kostenbauder, IEEE J. Quantum Electron. 26, 1148 (1990).
    [CrossRef]
  7. J. P. Gordon, R. L. Fork, Opt. Lett. 9, 153 (1984).
    [CrossRef] [PubMed]

1994

1991

1990

A. G. Kostenbauder, IEEE J. Quantum Electron. 26, 1148 (1990).
[CrossRef]

1989

O. E. Martinez, IEEE J. Quantum Electron. 25, 296 (1989).
[CrossRef]

1984

Couillaud, B.

L. Spinelli, B. Couillaud, N. Goldblatt, D. K. Negus, in Conference on Lasers and Electro-Optics, Vol. 10 of 1991 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1991), paper CPDP7.

Ferencz, K.

Fork, R. L.

Goldblatt, N.

L. Spinelli, B. Couillaud, N. Goldblatt, D. K. Negus, in Conference on Lasers and Electro-Optics, Vol. 10 of 1991 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1991), paper CPDP7.

Gordon, J. P.

Kean, P. N.

Kostenbauder, A. G.

A. G. Kostenbauder, IEEE J. Quantum Electron. 26, 1148 (1990).
[CrossRef]

Krausz, F.

Martinez, O. E.

O. E. Martinez, IEEE J. Quantum Electron. 25, 296 (1989).
[CrossRef]

Negus, D. K.

L. Spinelli, B. Couillaud, N. Goldblatt, D. K. Negus, in Conference on Lasers and Electro-Optics, Vol. 10 of 1991 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1991), paper CPDP7.

Sibbett, W.

Spence, D. E.

Spielmann, C.

Spielmann, Ch.

Spinelli, L.

L. Spinelli, B. Couillaud, N. Goldblatt, D. K. Negus, in Conference on Lasers and Electro-Optics, Vol. 10 of 1991 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1991), paper CPDP7.

Stingl, A.

Szipöcs, R.

IEEE J. Quantum Electron.

O. E. Martinez, IEEE J. Quantum Electron. 25, 296 (1989).
[CrossRef]

A. G. Kostenbauder, IEEE J. Quantum Electron. 26, 1148 (1990).
[CrossRef]

Opt. Lett.

Other

L. Spinelli, B. Couillaud, N. Goldblatt, D. K. Negus, in Conference on Lasers and Electro-Optics, Vol. 10 of 1991 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1991), paper CPDP7.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) Schematic of the laser cavity. f = 10 cm for 385-MHz operation, and f = 5 cm for 1-GHz operation. The solid and dashed curves represent the intracavity paths of propagation axes corresponding to two distinct wavelengths. (b) Equivalent unfolded laser cavity with curved mirror replaced by a lens. O is the actual intracavity point where all propagation axes intersect. O′ is the image of O through the lens. For calculation of GVD, the laser is divided into two parts as indicated.

Fig. 2
Fig. 2

(a) Typical autocorrelation for configuration at 385 MHz with an LAKL21 output coupler. The pulse duration measured directly from the oscillator was 54 fs, assuming a sech2 pulse shape. (b) Spectrum of the 54 fs pulse with a bandwidth of 17.9 nm.

Fig. 3
Fig. 3

Pulse train at a repetition rate of 1 GHz from a laser using an SF10 prismatic output coupler. The pulse duration was 111 fs, assuming a sech2 pulse shape, and the spectral bandwidth was 7 nm.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

d 2 ϕ d λ 2 = λ 3 2 π c 2 d 2 P d λ 2 ,
B 0 O = B 0 C + f [ ( θ / θ ) - 1 ] ,
D 0 O = D 0 C - f [ 1 - ( θ / θ ) ] ,
d 2 ϕ d ω 2 = ( 2 λ 3 2 π c 2 ) [ d 2 n d λ 2 A 0 B 0 - ( d n d λ ) 2 B 0 O + d 2 n d λ 2 C 0 D 0 - ( d n d λ ) 2 D 0 O ] .

Metrics