Abstract

We experimentally investigate the effects of third-order dispersion (TOD) on ultrafast sources, using dispersion-compensated femtosecond fiber lasers. By in situ measurement of the intracavity dispersion, we identify spectral resonances that are due to coupling of the cavity pulse energy to dispersive wave components at the phase velocity and group-velocity-matched wavelengths. We obtain pulse widths as short as 91 fs by partially compensating the TOD. We relate the observed effects to consequences for soliton transmission and operation of other solitary-pulse lasers.

© 1994 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. I. N. Duling, Electron. Lett. 27, 544 (1991).
    [Crossref]
  2. M. L. Dennis, I. N. Duling, Appl. Phys. Lett. 62, 2911 (1993).
    [Crossref]
  3. M. L. Dennis, I. N. Duling, IEEE J. Quantum Electron. 30, 1469 (1994).
    [Crossref]
  4. M. Nakazawa, E. Yoshida, Y. Kimura, Electron. Lett. 29, 63 (1993).
    [Crossref]
  5. M. E. Fermann, M. J. Andrejco, M. L. Stock, Y. Silberberg, A. M. Weiner, Appl. Phys. Lett. 62, 910 (1993).
    [Crossref]
  6. K. Tamura, E. P. Ippen, H. A. Haus, L. E. Nelson, Opt. Lett. 18, 1080 (1993).
    [Crossref] [PubMed]
  7. I. N. Duling, M. L. Dennis, “Dispersion compensated fiber lasers,” in Nonlinear Guided Wave Phenomena, Vol. 15 of 1993 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1993), pp. 360–362.
  8. P. K. A. Wai, C. R. Menyuk, Y. C. Lee, H. H. Chen, Opt. Lett. 11, 464 (1986).
    [Crossref] [PubMed]
  9. Y. Kodama, M. Romagnoli, S. Wabnitz, M. Midrio, Opt. Lett. 19, 165 (1994).
    [Crossref] [PubMed]
  10. A. Hasegawa, Y. Kodama, Opt. Lett. 15, 1443 (1990); A. Hasegawa, Y. Kodama, Opt. Lett. 16, 1385 (1991).
    [Crossref] [PubMed]
  11. M. L. Dennis, I. N. Duling, Electron. Lett. 29, 409 (1993).
    [Crossref]
  12. F. W. Wise, I. A. Walmsley, C. L. Tang, Opt. Lett. 13, 129 (1988).
    [Crossref] [PubMed]
  13. F. Salin, P. Grangier, P. Georges, A. Brun, Opt. Lett. 15, 374 (1990).
  14. P. F. Curley, Ch. Spielmann, T. Brabec, F. Krausz, E. Wintner, A. J. Schmidt, Opt. Lett. 18, 54 (1993).
    [Crossref] [PubMed]
  15. H. A. Haus, J. D. Moores, L. E. Nelson, Opt. Lett. 18, 51 (1993).
    [Crossref] [PubMed]
  16. V. Tzelepis, S. Markatos, S. Kalpogiannis, Th. Sphicopoulos, C. Caroubalos, J. Lightwave Technol. 11, 1729 (1993).
    [Crossref]
  17. T. Brabec, S. M. J. Kelly, Opt. Lett. 18, 2002 (1993).
    [Crossref] [PubMed]
  18. M. Matsumoto, H. Ikeda, A. Hasegawa, Opt. Lett. 19, 183 (1994).
    [Crossref] [PubMed]
  19. N. Pandit, D. U. Noske, S. M. J. Kelly, J. R. Taylor, Electron. Lett. 28, 455 (1992).
    [Crossref]
  20. P. K. A. Wai, C. R. Menyuk, H. H. Chen, Y. C. Lee, Opt. Lett. 12, 628 (1987).
    [Crossref] [PubMed]

1994 (3)

1993 (9)

H. A. Haus, J. D. Moores, L. E. Nelson, Opt. Lett. 18, 51 (1993).
[Crossref] [PubMed]

P. F. Curley, Ch. Spielmann, T. Brabec, F. Krausz, E. Wintner, A. J. Schmidt, Opt. Lett. 18, 54 (1993).
[Crossref] [PubMed]

K. Tamura, E. P. Ippen, H. A. Haus, L. E. Nelson, Opt. Lett. 18, 1080 (1993).
[Crossref] [PubMed]

T. Brabec, S. M. J. Kelly, Opt. Lett. 18, 2002 (1993).
[Crossref] [PubMed]

M. Nakazawa, E. Yoshida, Y. Kimura, Electron. Lett. 29, 63 (1993).
[Crossref]

M. E. Fermann, M. J. Andrejco, M. L. Stock, Y. Silberberg, A. M. Weiner, Appl. Phys. Lett. 62, 910 (1993).
[Crossref]

M. L. Dennis, I. N. Duling, Electron. Lett. 29, 409 (1993).
[Crossref]

M. L. Dennis, I. N. Duling, Appl. Phys. Lett. 62, 2911 (1993).
[Crossref]

V. Tzelepis, S. Markatos, S. Kalpogiannis, Th. Sphicopoulos, C. Caroubalos, J. Lightwave Technol. 11, 1729 (1993).
[Crossref]

1992 (1)

N. Pandit, D. U. Noske, S. M. J. Kelly, J. R. Taylor, Electron. Lett. 28, 455 (1992).
[Crossref]

1991 (1)

I. N. Duling, Electron. Lett. 27, 544 (1991).
[Crossref]

1990 (2)

1988 (1)

1987 (1)

1986 (1)

Andrejco, M. J.

M. E. Fermann, M. J. Andrejco, M. L. Stock, Y. Silberberg, A. M. Weiner, Appl. Phys. Lett. 62, 910 (1993).
[Crossref]

Brabec, T.

Brun, A.

F. Salin, P. Grangier, P. Georges, A. Brun, Opt. Lett. 15, 374 (1990).

Caroubalos, C.

V. Tzelepis, S. Markatos, S. Kalpogiannis, Th. Sphicopoulos, C. Caroubalos, J. Lightwave Technol. 11, 1729 (1993).
[Crossref]

Chen, H. H.

Curley, P. F.

Dennis, M. L.

M. L. Dennis, I. N. Duling, IEEE J. Quantum Electron. 30, 1469 (1994).
[Crossref]

M. L. Dennis, I. N. Duling, Appl. Phys. Lett. 62, 2911 (1993).
[Crossref]

M. L. Dennis, I. N. Duling, Electron. Lett. 29, 409 (1993).
[Crossref]

I. N. Duling, M. L. Dennis, “Dispersion compensated fiber lasers,” in Nonlinear Guided Wave Phenomena, Vol. 15 of 1993 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1993), pp. 360–362.

Duling, I. N.

M. L. Dennis, I. N. Duling, IEEE J. Quantum Electron. 30, 1469 (1994).
[Crossref]

M. L. Dennis, I. N. Duling, Appl. Phys. Lett. 62, 2911 (1993).
[Crossref]

M. L. Dennis, I. N. Duling, Electron. Lett. 29, 409 (1993).
[Crossref]

I. N. Duling, Electron. Lett. 27, 544 (1991).
[Crossref]

I. N. Duling, M. L. Dennis, “Dispersion compensated fiber lasers,” in Nonlinear Guided Wave Phenomena, Vol. 15 of 1993 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1993), pp. 360–362.

Fermann, M. E.

M. E. Fermann, M. J. Andrejco, M. L. Stock, Y. Silberberg, A. M. Weiner, Appl. Phys. Lett. 62, 910 (1993).
[Crossref]

Georges, P.

F. Salin, P. Grangier, P. Georges, A. Brun, Opt. Lett. 15, 374 (1990).

Grangier, P.

F. Salin, P. Grangier, P. Georges, A. Brun, Opt. Lett. 15, 374 (1990).

Hasegawa, A.

Haus, H. A.

Ikeda, H.

Ippen, E. P.

Kalpogiannis, S.

V. Tzelepis, S. Markatos, S. Kalpogiannis, Th. Sphicopoulos, C. Caroubalos, J. Lightwave Technol. 11, 1729 (1993).
[Crossref]

Kelly, S. M. J.

T. Brabec, S. M. J. Kelly, Opt. Lett. 18, 2002 (1993).
[Crossref] [PubMed]

N. Pandit, D. U. Noske, S. M. J. Kelly, J. R. Taylor, Electron. Lett. 28, 455 (1992).
[Crossref]

Kimura, Y.

M. Nakazawa, E. Yoshida, Y. Kimura, Electron. Lett. 29, 63 (1993).
[Crossref]

Kodama, Y.

Krausz, F.

Lee, Y. C.

Markatos, S.

V. Tzelepis, S. Markatos, S. Kalpogiannis, Th. Sphicopoulos, C. Caroubalos, J. Lightwave Technol. 11, 1729 (1993).
[Crossref]

Matsumoto, M.

Menyuk, C. R.

Midrio, M.

Moores, J. D.

Nakazawa, M.

M. Nakazawa, E. Yoshida, Y. Kimura, Electron. Lett. 29, 63 (1993).
[Crossref]

Nelson, L. E.

Noske, D. U.

N. Pandit, D. U. Noske, S. M. J. Kelly, J. R. Taylor, Electron. Lett. 28, 455 (1992).
[Crossref]

Pandit, N.

N. Pandit, D. U. Noske, S. M. J. Kelly, J. R. Taylor, Electron. Lett. 28, 455 (1992).
[Crossref]

Romagnoli, M.

Salin, F.

F. Salin, P. Grangier, P. Georges, A. Brun, Opt. Lett. 15, 374 (1990).

Schmidt, A. J.

Silberberg, Y.

M. E. Fermann, M. J. Andrejco, M. L. Stock, Y. Silberberg, A. M. Weiner, Appl. Phys. Lett. 62, 910 (1993).
[Crossref]

Sphicopoulos, Th.

V. Tzelepis, S. Markatos, S. Kalpogiannis, Th. Sphicopoulos, C. Caroubalos, J. Lightwave Technol. 11, 1729 (1993).
[Crossref]

Spielmann, Ch.

Stock, M. L.

M. E. Fermann, M. J. Andrejco, M. L. Stock, Y. Silberberg, A. M. Weiner, Appl. Phys. Lett. 62, 910 (1993).
[Crossref]

Tamura, K.

Tang, C. L.

Taylor, J. R.

N. Pandit, D. U. Noske, S. M. J. Kelly, J. R. Taylor, Electron. Lett. 28, 455 (1992).
[Crossref]

Tzelepis, V.

V. Tzelepis, S. Markatos, S. Kalpogiannis, Th. Sphicopoulos, C. Caroubalos, J. Lightwave Technol. 11, 1729 (1993).
[Crossref]

Wabnitz, S.

Wai, P. K. A.

Walmsley, I. A.

Weiner, A. M.

M. E. Fermann, M. J. Andrejco, M. L. Stock, Y. Silberberg, A. M. Weiner, Appl. Phys. Lett. 62, 910 (1993).
[Crossref]

Wintner, E.

Wise, F. W.

Yoshida, E.

M. Nakazawa, E. Yoshida, Y. Kimura, Electron. Lett. 29, 63 (1993).
[Crossref]

Appl. Phys. Lett. (2)

M. L. Dennis, I. N. Duling, Appl. Phys. Lett. 62, 2911 (1993).
[Crossref]

M. E. Fermann, M. J. Andrejco, M. L. Stock, Y. Silberberg, A. M. Weiner, Appl. Phys. Lett. 62, 910 (1993).
[Crossref]

Electron. Lett. (4)

I. N. Duling, Electron. Lett. 27, 544 (1991).
[Crossref]

M. Nakazawa, E. Yoshida, Y. Kimura, Electron. Lett. 29, 63 (1993).
[Crossref]

M. L. Dennis, I. N. Duling, Electron. Lett. 29, 409 (1993).
[Crossref]

N. Pandit, D. U. Noske, S. M. J. Kelly, J. R. Taylor, Electron. Lett. 28, 455 (1992).
[Crossref]

IEEE J. Quantum Electron. (1)

M. L. Dennis, I. N. Duling, IEEE J. Quantum Electron. 30, 1469 (1994).
[Crossref]

J. Lightwave Technol. (1)

V. Tzelepis, S. Markatos, S. Kalpogiannis, Th. Sphicopoulos, C. Caroubalos, J. Lightwave Technol. 11, 1729 (1993).
[Crossref]

Opt. Lett. (11)

Other (1)

I. N. Duling, M. L. Dennis, “Dispersion compensated fiber lasers,” in Nonlinear Guided Wave Phenomena, Vol. 15 of 1993 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1993), pp. 360–362.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Variation of the sideband spectra with increasing relative third-order dispersion. (a) Base cavity, k0 ″ − 0.093 ps2, k0‴ = 0.46 × 10−3 ps3 ; (b) 35-cm DCF, −0.045 ps2, 0.76 × 10−3 ps3 ; (c) 71-cm DCF, −0.015 ps2 ; 1.06 × 10−3 ps3.

Fig. 2
Fig. 2

Spectrum of the output of a laser with large intracavity dispersion. (a) Linear and logarithmic spectra with the sidebands labeled with their corresponding order numbers. (b) Cavity dispersion relation obtained by fitting the sideband spectrum. The triangle denotes the center of the group-velocity-matched sidelobe.

Fig. 3
Fig. 3

Positions of the group-velocity-matched sidelobe as a function of the pulse center wavelength. The zero-dispersion wavelength was determined to be 1540.7 ± 0.9 nm. Estimated uncertainty for all points is indicated by the plotted error bar.

Fig. 4
Fig. 4

Autocorrelation for a cavity with partially compensated TOD, operating near the zero-GVD wavelength. The pulse width is 91 fs, assuming a sech2 pulse. Inset: spectrum, showing that the wavelength of zero GVD is within the spectrum of the pulse. SHG, second-harmonic generation.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

N = - 1 4 π k 0 ( Δ ω N 2 + τ 0 - 2 ) - 1 12 π k 0 Δ ω N 3 .

Metrics