Abstract

The collisions of spatial vector solitons have been investigated numerically. Both the polarization and propagation directions of the solitons are changed after collision, which could be useful in the applications of all-optical switching. It is also found that both the polarization mixing and the beam deflection become exponentially smaller as θ increases. The advantages of using vector solitons in optical switching are discussed.

© 1994 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Shalaby, A. Barthelemy, Opt. Lett. 16, 1472 (1991).
    [CrossRef] [PubMed]
  2. R. de la Fuente, A. Barthelemy, IEEE J. Quantum Electron. 28, 547 (1992).
    [CrossRef]
  3. A. W. Snyder, A. P. Sheppard, Opt. Lett. 18,482 (1993).
    [CrossRef] [PubMed]
  4. M. Shalaby, A. Barthelemy, Opt. Commun. 94, 341 (1992).
    [CrossRef]
  5. M. Shalaby, F. Reynaud, A. Barthelemy, Opt. Lett. 17, 778 (1992).
    [CrossRef] [PubMed]
  6. A. P. Sheppard, Opt. Commun. 102,317 (1993).
    [CrossRef]
  7. C. De Angelis, G. F. Nalesso, J. Opt. Soc. Am. B 10, 55 (1993).
    [CrossRef]
  8. G. E. Torres-Cisneros, J. J. Sánchez-Mondragón, V. A. Vysloukh, Opt. Lett. 18, 1299 (1993).
    [CrossRef] [PubMed]
  9. C. R. Menyuk, IEEE J. Quantum Electron. 25, 2674 (1989).
    [CrossRef]
  10. B. A. Malomed, S. Wabnitz, Opt. Lett. 16, 1388 (1991).
    [CrossRef] [PubMed]
  11. Q. Wang, P. K. A. Wai, C.-J. Chen, C. R. Menyuk, Opt. Lett. 17, 1265 (1992).
    [CrossRef] [PubMed]
  12. X. D. Cao, D. D. Meyerhofer, J. Opt. Soc. Am. B 11,380 (1994).
    [CrossRef]
  13. C. R. Menyuk, Opt. Lett. 12, 614 (1987); J. Opt. Soc. Am. B 5, 392 (1988).
    [CrossRef] [PubMed]

1994 (1)

1993 (4)

1992 (4)

1991 (2)

1989 (1)

C. R. Menyuk, IEEE J. Quantum Electron. 25, 2674 (1989).
[CrossRef]

1987 (1)

Barthelemy, A.

M. Shalaby, F. Reynaud, A. Barthelemy, Opt. Lett. 17, 778 (1992).
[CrossRef] [PubMed]

R. de la Fuente, A. Barthelemy, IEEE J. Quantum Electron. 28, 547 (1992).
[CrossRef]

M. Shalaby, A. Barthelemy, Opt. Commun. 94, 341 (1992).
[CrossRef]

M. Shalaby, A. Barthelemy, Opt. Lett. 16, 1472 (1991).
[CrossRef] [PubMed]

Cao, X. D.

Chen, C.-J.

De Angelis, C.

de la Fuente, R.

R. de la Fuente, A. Barthelemy, IEEE J. Quantum Electron. 28, 547 (1992).
[CrossRef]

Malomed, B. A.

Menyuk, C. R.

Meyerhofer, D. D.

Nalesso, G. F.

Reynaud, F.

Sánchez-Mondragón, J. J.

Shalaby, M.

Sheppard, A. P.

Snyder, A. W.

Torres-Cisneros, G. E.

Vysloukh, V. A.

Wabnitz, S.

Wai, P. K. A.

Wang, Q.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Dependence of Δθ of the colliding solitons on the incident angle θ. (a) Overall behavior. (b) Fine structure of the second interval, with 0.27 < θ < 0.305, A 0 = 1 / 1 + ɛ.

Fig. 2
Fig. 2

Dynamic behavior of a soliton collision in the second interval, with θ = 0.301, A 0 = 1 / 1 + ɛ. (a) Propagation of the intensity profile of component Al. (b) Variation of m(z) versus propagation distance z.

Fig. 3
Fig. 3

Dynamic behavior of a soliton collision in the second interval, with θ = 0.3002, A 0 = 1 / 1 + ɛ. Each soliton is totally reflected by the other because of the nonlinear refraction.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

i ( z + θ x ) A 1 + 1 2 x x 2 A 1 + ( A 1 2 + ɛ A 2 2 ) A 1 + 1 2 ɛ A 2 2 A 1 * exp ( - i R θ x ) = 0 , i ( z + θ x ) A 2 + 1 2 x x 2 A 2 + ( A 2 2 + ɛ A 1 2 ) A 2 + 1 2 ɛ A 1 2 A 2 * exp ( - i R θ x ) = 0 ,
A 1 ( z = 0 , x ) = A 0 sech [ A 0 ( x + x 0 ) ]             A 2 = 0 , A 2 ( z = 0 , x ) = A 0 sech [ A 0 ( x + x 0 ) ]             A 1 = 0 ,
m ( z ) = - + A 1 ( z , x ) A 2 ( z , x ) d x - + A 1 ( z , x ) 2 d x .

Metrics