Abstract

We describe a sensitive and simple single-beam technique to measure simultaneously the real and the imaginary contributions to the complex optical nonlinearity (the nonlinear refraction and absorption). We call this technique antiresonant ring interferometric nonlinear spectroscopy (ARINS). An antiresonant ring interferometer, which has improved stability, is used to detect very small changes in the phase and the amplitude of an optical beam. This allows very low intensities to be used and eliminates many interfering processes present in other techniques that require higher intensities. We demonstrate ARINS by measuring the optical nonlinearities of bulk ZnS, KDP, and C70 thin films.

© 1994 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. See, for example,L. L. Chase, E. W. Van Stryland, in Optical Materials, suppl. toCRC Handbook of Laser Science and Technology (CRC, Boca Raton, Fla., to be published).
  2. M. Sheik-Bahae, A. A. Said, E. W. Van Stryland, Opt. Lett. 14, 955 (1989).
    [CrossRef] [PubMed]
  3. H. W. H. Lee, R. S. Hughes, in Conference on Lasers and Electro-Optics, Vol. 12 of 1992 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1992), p. 120.
  4. A. E. Siegman, IEEE J. Quantum Electron. QE-9, 247 (1973); P. Hariharan, Appl. Opt. 14, 2319 (1975).
    [CrossRef]
  5. R. Trebino, C. C. Hayden, Opt. Lett. 16,493 (1991).
    [CrossRef] [PubMed]
  6. Y. Li, G. Eichmann, R. R. Alfano, Appl. Opt. 25, 209 (1986).
    [CrossRef] [PubMed]
  7. M. C. Gabriel, N. A. Whitaker, C. W. Dirk, M. G. Kuzyk, M. Thakur, Opt. Lett. 16, 1334 (1991).
    [CrossRef] [PubMed]
  8. Y. Bae, J. J. Song, Y. B. Kim, J. Appl. Phys. 53, 615 (1981); P. Liu, W. L. Smith, H. Lotem, J. H. Bechtel, N. Bloembergen, R. S. Adhav, Phys. Rev. B 17, 4620 (1978); J. Reintjes, R. C. Eckardt, IEEE J. Quantum Electron. QE-13, 791 (1977).
    [CrossRef]

1991 (2)

1989 (1)

1986 (1)

1981 (1)

Y. Bae, J. J. Song, Y. B. Kim, J. Appl. Phys. 53, 615 (1981); P. Liu, W. L. Smith, H. Lotem, J. H. Bechtel, N. Bloembergen, R. S. Adhav, Phys. Rev. B 17, 4620 (1978); J. Reintjes, R. C. Eckardt, IEEE J. Quantum Electron. QE-13, 791 (1977).
[CrossRef]

1973 (1)

A. E. Siegman, IEEE J. Quantum Electron. QE-9, 247 (1973); P. Hariharan, Appl. Opt. 14, 2319 (1975).
[CrossRef]

Alfano, R. R.

Bae, Y.

Y. Bae, J. J. Song, Y. B. Kim, J. Appl. Phys. 53, 615 (1981); P. Liu, W. L. Smith, H. Lotem, J. H. Bechtel, N. Bloembergen, R. S. Adhav, Phys. Rev. B 17, 4620 (1978); J. Reintjes, R. C. Eckardt, IEEE J. Quantum Electron. QE-13, 791 (1977).
[CrossRef]

Chase, L. L.

See, for example,L. L. Chase, E. W. Van Stryland, in Optical Materials, suppl. toCRC Handbook of Laser Science and Technology (CRC, Boca Raton, Fla., to be published).

Dirk, C. W.

Eichmann, G.

Gabriel, M. C.

Hayden, C. C.

Hughes, R. S.

H. W. H. Lee, R. S. Hughes, in Conference on Lasers and Electro-Optics, Vol. 12 of 1992 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1992), p. 120.

Kim, Y. B.

Y. Bae, J. J. Song, Y. B. Kim, J. Appl. Phys. 53, 615 (1981); P. Liu, W. L. Smith, H. Lotem, J. H. Bechtel, N. Bloembergen, R. S. Adhav, Phys. Rev. B 17, 4620 (1978); J. Reintjes, R. C. Eckardt, IEEE J. Quantum Electron. QE-13, 791 (1977).
[CrossRef]

Kuzyk, M. G.

Lee, H. W. H.

H. W. H. Lee, R. S. Hughes, in Conference on Lasers and Electro-Optics, Vol. 12 of 1992 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1992), p. 120.

Li, Y.

Said, A. A.

Sheik-Bahae, M.

Siegman, A. E.

A. E. Siegman, IEEE J. Quantum Electron. QE-9, 247 (1973); P. Hariharan, Appl. Opt. 14, 2319 (1975).
[CrossRef]

Song, J. J.

Y. Bae, J. J. Song, Y. B. Kim, J. Appl. Phys. 53, 615 (1981); P. Liu, W. L. Smith, H. Lotem, J. H. Bechtel, N. Bloembergen, R. S. Adhav, Phys. Rev. B 17, 4620 (1978); J. Reintjes, R. C. Eckardt, IEEE J. Quantum Electron. QE-13, 791 (1977).
[CrossRef]

Thakur, M.

Trebino, R.

Van Stryland, E. W.

M. Sheik-Bahae, A. A. Said, E. W. Van Stryland, Opt. Lett. 14, 955 (1989).
[CrossRef] [PubMed]

See, for example,L. L. Chase, E. W. Van Stryland, in Optical Materials, suppl. toCRC Handbook of Laser Science and Technology (CRC, Boca Raton, Fla., to be published).

Whitaker, N. A.

Appl. Opt. (1)

IEEE J. Quantum Electron. (1)

A. E. Siegman, IEEE J. Quantum Electron. QE-9, 247 (1973); P. Hariharan, Appl. Opt. 14, 2319 (1975).
[CrossRef]

J. Appl. Phys. (1)

Y. Bae, J. J. Song, Y. B. Kim, J. Appl. Phys. 53, 615 (1981); P. Liu, W. L. Smith, H. Lotem, J. H. Bechtel, N. Bloembergen, R. S. Adhav, Phys. Rev. B 17, 4620 (1978); J. Reintjes, R. C. Eckardt, IEEE J. Quantum Electron. QE-13, 791 (1977).
[CrossRef]

Opt. Lett. (3)

Other (2)

H. W. H. Lee, R. S. Hughes, in Conference on Lasers and Electro-Optics, Vol. 12 of 1992 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1992), p. 120.

See, for example,L. L. Chase, E. W. Van Stryland, in Optical Materials, suppl. toCRC Handbook of Laser Science and Technology (CRC, Boca Raton, Fla., to be published).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

Examples of experimental arrangements for ARINS.

Fig. 2
Fig. 2

ARINS on a 160-nm-thick C70 thin film taken at 850 nm.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

I out = I in { ( 1 / 2 - δ ) 2 exp [ 2 Re ( ϕ cw ) ] + ( 1 / 2 + δ ) 2 exp [ 2 Re ( ϕ ccw ) ] + ( 2 δ 2 - 1 / 2 ) exp [ Re ( ϕ cw + ϕ ccw ) * ] × cos [ Im ( ϕ cw + ϕ ccw * ) ] } .
I out = I in exp ( - α L ) [ ( 1 / 2 + δ ) 2 + ( 1 / 2 - δ ) 2 exp ( - Δ α L ) + ( 2 δ 2 - 1 / 2 ) exp ( - 1 / 2 Δ α L ) cos ( k 0 Δ n L ) ] .
I out = I in exp ( - α L ) ( 1 - R F ) ( 1 / 2 - δ ) [ ( 1 / 2 + δ ) 2 + ( 1 / 2 - δ ) 2 1 + β I in L + ( 2 δ 2 - 1 / 2 ) 1 + β I in L cos ( k 0 n 2 I in L ) ] .
I out = I in exp ( - α L ) { 4 δ 2 + δ Δ α L + [ ( 1 / 4 ) Δ α L ] 2 + [ ( 1 / 2 ) k 0 Δ n L ] 2 } ,
I out = I in exp ( - α L ) ( 1 - R F ) ( 1 / 2 - δ ) { 4 δ 2 + β δ L I in + [ ( 1 4 β ) 2 + ( 1 2 k 0 n 2 ) 2 ] L 2 I in 2 } .
I out = I in exp ( - α · L ) { ( 1 / 2 + δ ) 2 + ( 1 / 2 - δ ) 2 exp ( - Δ α · L ) + ( 2 δ 2 - 1 / 2 ) exp [ - 1 / 2 ( Δ α · L ) ] × cos [ k 0 ( Δ n · L ) ] } .

Metrics