Abstract

The recovery of the self-frequency shift effect on a soliton by optical phase conjugation is investigated. It is proved that, without third-order dispersion and fiber loss, the soliton self-frequency shift can be completely recovered. The recoveries for a fundamental soliton and a second-order soliton in the presence of third-order dispersion and of fiber loss, which is compensated by the distributed erbium-doped fiber amplifiers, are numerically studied.

© 1994 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Watanabe, T. Naito, T. Chikama, IEEE Photon. Technol. Lett. 5, 92 (1993).
    [CrossRef]
  2. M. C. Tatham, G. Sherlock, L. D. Westbrook, Electron. Lett. 29, 1851 (1993).
    [CrossRef]
  3. A. Yariv, D. Fekete, D. M. Pepper, Opt. Lett. 4, 52 (1979).
    [CrossRef] [PubMed]
  4. R. A. Fisher, B. R. Suydam, D. Yevick, Opt. Lett. 8, 611 (1983).
    [CrossRef] [PubMed]
  5. W. Forysiak, N. J. Doran, Electron. Lett. 30, 154 (1994).
    [CrossRef]
  6. S. Wen, S. Chi, Electron. Lett. 30, 663 (1994).
    [CrossRef]
  7. J. P. Gordon, Opt. Lett. 11, 662 (1986).
    [CrossRef] [PubMed]
  8. G. P. Agrawal, Nonlinear Fiber Optics (Academic, Boston, Mass., 1989), Chap. 5.
  9. S. Wen, S. Chi, Opt. Quantum Electron. 21, 335 (1989).
    [CrossRef]
  10. S. Wen, Opt. Lett. 19, 22 (1994).
    [CrossRef] [PubMed]

1994 (3)

W. Forysiak, N. J. Doran, Electron. Lett. 30, 154 (1994).
[CrossRef]

S. Wen, S. Chi, Electron. Lett. 30, 663 (1994).
[CrossRef]

S. Wen, Opt. Lett. 19, 22 (1994).
[CrossRef] [PubMed]

1993 (2)

S. Watanabe, T. Naito, T. Chikama, IEEE Photon. Technol. Lett. 5, 92 (1993).
[CrossRef]

M. C. Tatham, G. Sherlock, L. D. Westbrook, Electron. Lett. 29, 1851 (1993).
[CrossRef]

1989 (1)

S. Wen, S. Chi, Opt. Quantum Electron. 21, 335 (1989).
[CrossRef]

1986 (1)

1983 (1)

1979 (1)

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics (Academic, Boston, Mass., 1989), Chap. 5.

Chi, S.

S. Wen, S. Chi, Electron. Lett. 30, 663 (1994).
[CrossRef]

S. Wen, S. Chi, Opt. Quantum Electron. 21, 335 (1989).
[CrossRef]

Chikama, T.

S. Watanabe, T. Naito, T. Chikama, IEEE Photon. Technol. Lett. 5, 92 (1993).
[CrossRef]

Doran, N. J.

W. Forysiak, N. J. Doran, Electron. Lett. 30, 154 (1994).
[CrossRef]

Fekete, D.

Fisher, R. A.

Forysiak, W.

W. Forysiak, N. J. Doran, Electron. Lett. 30, 154 (1994).
[CrossRef]

Gordon, J. P.

Naito, T.

S. Watanabe, T. Naito, T. Chikama, IEEE Photon. Technol. Lett. 5, 92 (1993).
[CrossRef]

Pepper, D. M.

Sherlock, G.

M. C. Tatham, G. Sherlock, L. D. Westbrook, Electron. Lett. 29, 1851 (1993).
[CrossRef]

Suydam, B. R.

Tatham, M. C.

M. C. Tatham, G. Sherlock, L. D. Westbrook, Electron. Lett. 29, 1851 (1993).
[CrossRef]

Watanabe, S.

S. Watanabe, T. Naito, T. Chikama, IEEE Photon. Technol. Lett. 5, 92 (1993).
[CrossRef]

Wen, S.

S. Wen, S. Chi, Electron. Lett. 30, 663 (1994).
[CrossRef]

S. Wen, Opt. Lett. 19, 22 (1994).
[CrossRef] [PubMed]

S. Wen, S. Chi, Opt. Quantum Electron. 21, 335 (1989).
[CrossRef]

Westbrook, L. D.

M. C. Tatham, G. Sherlock, L. D. Westbrook, Electron. Lett. 29, 1851 (1993).
[CrossRef]

Yariv, A.

Yevick, D.

Electron. Lett. (3)

M. C. Tatham, G. Sherlock, L. D. Westbrook, Electron. Lett. 29, 1851 (1993).
[CrossRef]

W. Forysiak, N. J. Doran, Electron. Lett. 30, 154 (1994).
[CrossRef]

S. Wen, S. Chi, Electron. Lett. 30, 663 (1994).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

S. Watanabe, T. Naito, T. Chikama, IEEE Photon. Technol. Lett. 5, 92 (1993).
[CrossRef]

Opt. Lett. (4)

Opt. Quantum Electron. (1)

S. Wen, S. Chi, Opt. Quantum Electron. 21, 335 (1989).
[CrossRef]

Other (1)

G. P. Agrawal, Nonlinear Fiber Optics (Academic, Boston, Mass., 1989), Chap. 5.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Power envelope and (b) power spectrum of the N = 1 soliton with a pulse width τW = 1 ps along two cascaded DEDFA’s. The length of a DEDFA is 30 km. An optical phase conjugator is placed between the two DEDFA’s. The ideal case is shown by the dashed-dotted curves for comparison.

Fig. 2
Fig. 2

Net change of the delay time δτ of the N = 1 soliton versus pulse width τW for various doping densities Nt’s. The cases with β3 = 0 are shown by the dashed curves.

Fig. 3
Fig. 3

(a) Power envelope and (b) power spectrum of the N = 2 soliton with a pulse width τW = 5 ps along two cascaded DEDFA’s. The length of a DEDFA is 30 km. An optical phase conjugator is placed between the two DEDFA’s. The ideal case is shown by the dashed-dotted curves for comparison.

Fig. 4
Fig. 4

Change ratio γ of the rms pulse width of the N = 2 soliton at the output of the second DEDFA versus the pulse width τW for various doping densities Nt’s. The cases with β3 = 0 are shown by the dashed curves.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

i ϕ z - 1 2 β 2 2 ϕ τ 2 - i 1 6 β 3 3 ϕ τ 3 + n 2 β 0 ϕ 2 ϕ - c r ϕ 2 τ ϕ = - 1 2 i α ϕ ,
- i ϕ * z - 1 2 β 2 2 ϕ * τ 2 + n 2 β 0 ϕ 2 ϕ * - c r ϕ 2 τ ϕ * = 0.

Metrics