Abstract

The photomechanical model of laser ablation of biological tissue asserts that ablation is initiated when the laser-induced tensile stress exceeds the ultimate tensile strength of the target. We show that, unlike the one-dimensional thermoelastic model of laser-induced stress generation that has appeared in the literature, the full three-dimensional solution predicts the development of significant tensile stresses on the surface of the target, precisely where ablation is observed to occur. An interferometric technique has been developed to measure the time-dependent thermoelastic expansion, and the results for subthreshold laser fluences are in precise agreement with the predictions of the three-dimensional model.

© 1994 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. A. Oraevsky, R. I. Esenaliev, V. S. Letokhov, in Laser Ablation, Mechanisms and Applications, J. C. Miller, R. F. Haglund, eds. (Springer-Verlag, Berlin, 1991), p. 112.
    [CrossRef]
  2. R. Srinivasan, Science 234, 559 (1986).
    [CrossRef] [PubMed]
  3. D. Albagli, L. T. Perelman, G. S. Janes, C. von Rosenberg, I. Itzkan, M. S. Feld, Laser Life Sci. 6(1), 55 (1994).
  4. V. V. Golovlyov, R. O. Esenaliev, V. S. Letokhov, Appl. Phys. B 57, 451 (1993).
    [CrossRef]
  5. J. P. Cummings, J. T. Walsh, Appl. Phys. Lett. 62, 1988 (1993).
    [CrossRef]
  6. F. R. Tuler, B. M. Butcher, Int. J. Frac. Mech. 4, 431 (1968).
  7. R. S. Dingus, R. J. Scammon, in Laser Ablation, Mechanisms and Applications, J. C. Miller, R. F. Haglund, eds. (Springer-Verlag, Berlin, 1991), p. 180.
    [CrossRef]
  8. S. L. Jacques, G. Gofstein, R. S. Dingus, Proc. Soc. Photo-Opt. Instrum. Eng. 1646,284 (1992).
  9. L. D. Landau, E. M. Lifshitz, Theory of Elasticity, 3rd ed. (Pergamon, Oxford, 1986), pp. 16–17, 87–88.
  10. D. Potter, Computational Physics (Wiley, New York, 1977), pp. 63–75.
  11. D. Albagli, M. Dark, C. von Rosenberg, L. T. Perelman, I. Itzkan, M. S. Feld, Med. Phys. 21,1323 (1994).
    [CrossRef] [PubMed]
  12. D. Albagli, B. Banish, M. Dark, G. S. Janes, C. von Rosenberg, L. T. Perelman, I. Itzkan, M. S. Feld, Lasers Surg. Med. 14,374 (1994).
    [CrossRef] [PubMed]
  13. L. T. Perelman, D. Albagli, M. Dark, J. Schaffer, C. von Rosenberg, I. Itzkan, M. S. Feld, Proc. Soc. Photo-Opt. Instrum. Eng. 2134A, 144 (1994).

1994 (4)

D. Albagli, L. T. Perelman, G. S. Janes, C. von Rosenberg, I. Itzkan, M. S. Feld, Laser Life Sci. 6(1), 55 (1994).

D. Albagli, M. Dark, C. von Rosenberg, L. T. Perelman, I. Itzkan, M. S. Feld, Med. Phys. 21,1323 (1994).
[CrossRef] [PubMed]

D. Albagli, B. Banish, M. Dark, G. S. Janes, C. von Rosenberg, L. T. Perelman, I. Itzkan, M. S. Feld, Lasers Surg. Med. 14,374 (1994).
[CrossRef] [PubMed]

L. T. Perelman, D. Albagli, M. Dark, J. Schaffer, C. von Rosenberg, I. Itzkan, M. S. Feld, Proc. Soc. Photo-Opt. Instrum. Eng. 2134A, 144 (1994).

1993 (2)

V. V. Golovlyov, R. O. Esenaliev, V. S. Letokhov, Appl. Phys. B 57, 451 (1993).
[CrossRef]

J. P. Cummings, J. T. Walsh, Appl. Phys. Lett. 62, 1988 (1993).
[CrossRef]

1992 (1)

S. L. Jacques, G. Gofstein, R. S. Dingus, Proc. Soc. Photo-Opt. Instrum. Eng. 1646,284 (1992).

1986 (1)

R. Srinivasan, Science 234, 559 (1986).
[CrossRef] [PubMed]

1968 (1)

F. R. Tuler, B. M. Butcher, Int. J. Frac. Mech. 4, 431 (1968).

Albagli, D.

D. Albagli, L. T. Perelman, G. S. Janes, C. von Rosenberg, I. Itzkan, M. S. Feld, Laser Life Sci. 6(1), 55 (1994).

D. Albagli, M. Dark, C. von Rosenberg, L. T. Perelman, I. Itzkan, M. S. Feld, Med. Phys. 21,1323 (1994).
[CrossRef] [PubMed]

D. Albagli, B. Banish, M. Dark, G. S. Janes, C. von Rosenberg, L. T. Perelman, I. Itzkan, M. S. Feld, Lasers Surg. Med. 14,374 (1994).
[CrossRef] [PubMed]

L. T. Perelman, D. Albagli, M. Dark, J. Schaffer, C. von Rosenberg, I. Itzkan, M. S. Feld, Proc. Soc. Photo-Opt. Instrum. Eng. 2134A, 144 (1994).

Banish, B.

D. Albagli, B. Banish, M. Dark, G. S. Janes, C. von Rosenberg, L. T. Perelman, I. Itzkan, M. S. Feld, Lasers Surg. Med. 14,374 (1994).
[CrossRef] [PubMed]

Butcher, B. M.

F. R. Tuler, B. M. Butcher, Int. J. Frac. Mech. 4, 431 (1968).

Cummings, J. P.

J. P. Cummings, J. T. Walsh, Appl. Phys. Lett. 62, 1988 (1993).
[CrossRef]

Dark, M.

D. Albagli, B. Banish, M. Dark, G. S. Janes, C. von Rosenberg, L. T. Perelman, I. Itzkan, M. S. Feld, Lasers Surg. Med. 14,374 (1994).
[CrossRef] [PubMed]

D. Albagli, M. Dark, C. von Rosenberg, L. T. Perelman, I. Itzkan, M. S. Feld, Med. Phys. 21,1323 (1994).
[CrossRef] [PubMed]

L. T. Perelman, D. Albagli, M. Dark, J. Schaffer, C. von Rosenberg, I. Itzkan, M. S. Feld, Proc. Soc. Photo-Opt. Instrum. Eng. 2134A, 144 (1994).

Dingus, R. S.

S. L. Jacques, G. Gofstein, R. S. Dingus, Proc. Soc. Photo-Opt. Instrum. Eng. 1646,284 (1992).

R. S. Dingus, R. J. Scammon, in Laser Ablation, Mechanisms and Applications, J. C. Miller, R. F. Haglund, eds. (Springer-Verlag, Berlin, 1991), p. 180.
[CrossRef]

Esenaliev, R. I.

A. A. Oraevsky, R. I. Esenaliev, V. S. Letokhov, in Laser Ablation, Mechanisms and Applications, J. C. Miller, R. F. Haglund, eds. (Springer-Verlag, Berlin, 1991), p. 112.
[CrossRef]

Esenaliev, R. O.

V. V. Golovlyov, R. O. Esenaliev, V. S. Letokhov, Appl. Phys. B 57, 451 (1993).
[CrossRef]

Feld, M. S.

D. Albagli, L. T. Perelman, G. S. Janes, C. von Rosenberg, I. Itzkan, M. S. Feld, Laser Life Sci. 6(1), 55 (1994).

D. Albagli, M. Dark, C. von Rosenberg, L. T. Perelman, I. Itzkan, M. S. Feld, Med. Phys. 21,1323 (1994).
[CrossRef] [PubMed]

D. Albagli, B. Banish, M. Dark, G. S. Janes, C. von Rosenberg, L. T. Perelman, I. Itzkan, M. S. Feld, Lasers Surg. Med. 14,374 (1994).
[CrossRef] [PubMed]

L. T. Perelman, D. Albagli, M. Dark, J. Schaffer, C. von Rosenberg, I. Itzkan, M. S. Feld, Proc. Soc. Photo-Opt. Instrum. Eng. 2134A, 144 (1994).

Gofstein, G.

S. L. Jacques, G. Gofstein, R. S. Dingus, Proc. Soc. Photo-Opt. Instrum. Eng. 1646,284 (1992).

Golovlyov, V. V.

V. V. Golovlyov, R. O. Esenaliev, V. S. Letokhov, Appl. Phys. B 57, 451 (1993).
[CrossRef]

Itzkan, I.

D. Albagli, L. T. Perelman, G. S. Janes, C. von Rosenberg, I. Itzkan, M. S. Feld, Laser Life Sci. 6(1), 55 (1994).

D. Albagli, M. Dark, C. von Rosenberg, L. T. Perelman, I. Itzkan, M. S. Feld, Med. Phys. 21,1323 (1994).
[CrossRef] [PubMed]

L. T. Perelman, D. Albagli, M. Dark, J. Schaffer, C. von Rosenberg, I. Itzkan, M. S. Feld, Proc. Soc. Photo-Opt. Instrum. Eng. 2134A, 144 (1994).

D. Albagli, B. Banish, M. Dark, G. S. Janes, C. von Rosenberg, L. T. Perelman, I. Itzkan, M. S. Feld, Lasers Surg. Med. 14,374 (1994).
[CrossRef] [PubMed]

Jacques, S. L.

S. L. Jacques, G. Gofstein, R. S. Dingus, Proc. Soc. Photo-Opt. Instrum. Eng. 1646,284 (1992).

Janes, G. S.

D. Albagli, B. Banish, M. Dark, G. S. Janes, C. von Rosenberg, L. T. Perelman, I. Itzkan, M. S. Feld, Lasers Surg. Med. 14,374 (1994).
[CrossRef] [PubMed]

D. Albagli, L. T. Perelman, G. S. Janes, C. von Rosenberg, I. Itzkan, M. S. Feld, Laser Life Sci. 6(1), 55 (1994).

Landau, L. D.

L. D. Landau, E. M. Lifshitz, Theory of Elasticity, 3rd ed. (Pergamon, Oxford, 1986), pp. 16–17, 87–88.

Letokhov, V. S.

V. V. Golovlyov, R. O. Esenaliev, V. S. Letokhov, Appl. Phys. B 57, 451 (1993).
[CrossRef]

A. A. Oraevsky, R. I. Esenaliev, V. S. Letokhov, in Laser Ablation, Mechanisms and Applications, J. C. Miller, R. F. Haglund, eds. (Springer-Verlag, Berlin, 1991), p. 112.
[CrossRef]

Lifshitz, E. M.

L. D. Landau, E. M. Lifshitz, Theory of Elasticity, 3rd ed. (Pergamon, Oxford, 1986), pp. 16–17, 87–88.

Oraevsky, A. A.

A. A. Oraevsky, R. I. Esenaliev, V. S. Letokhov, in Laser Ablation, Mechanisms and Applications, J. C. Miller, R. F. Haglund, eds. (Springer-Verlag, Berlin, 1991), p. 112.
[CrossRef]

Perelman, L. T.

D. Albagli, L. T. Perelman, G. S. Janes, C. von Rosenberg, I. Itzkan, M. S. Feld, Laser Life Sci. 6(1), 55 (1994).

D. Albagli, M. Dark, C. von Rosenberg, L. T. Perelman, I. Itzkan, M. S. Feld, Med. Phys. 21,1323 (1994).
[CrossRef] [PubMed]

D. Albagli, B. Banish, M. Dark, G. S. Janes, C. von Rosenberg, L. T. Perelman, I. Itzkan, M. S. Feld, Lasers Surg. Med. 14,374 (1994).
[CrossRef] [PubMed]

L. T. Perelman, D. Albagli, M. Dark, J. Schaffer, C. von Rosenberg, I. Itzkan, M. S. Feld, Proc. Soc. Photo-Opt. Instrum. Eng. 2134A, 144 (1994).

Potter, D.

D. Potter, Computational Physics (Wiley, New York, 1977), pp. 63–75.

Scammon, R. J.

R. S. Dingus, R. J. Scammon, in Laser Ablation, Mechanisms and Applications, J. C. Miller, R. F. Haglund, eds. (Springer-Verlag, Berlin, 1991), p. 180.
[CrossRef]

Schaffer, J.

L. T. Perelman, D. Albagli, M. Dark, J. Schaffer, C. von Rosenberg, I. Itzkan, M. S. Feld, Proc. Soc. Photo-Opt. Instrum. Eng. 2134A, 144 (1994).

Srinivasan, R.

R. Srinivasan, Science 234, 559 (1986).
[CrossRef] [PubMed]

Tuler, F. R.

F. R. Tuler, B. M. Butcher, Int. J. Frac. Mech. 4, 431 (1968).

von Rosenberg, C.

D. Albagli, M. Dark, C. von Rosenberg, L. T. Perelman, I. Itzkan, M. S. Feld, Med. Phys. 21,1323 (1994).
[CrossRef] [PubMed]

D. Albagli, B. Banish, M. Dark, G. S. Janes, C. von Rosenberg, L. T. Perelman, I. Itzkan, M. S. Feld, Lasers Surg. Med. 14,374 (1994).
[CrossRef] [PubMed]

D. Albagli, L. T. Perelman, G. S. Janes, C. von Rosenberg, I. Itzkan, M. S. Feld, Laser Life Sci. 6(1), 55 (1994).

L. T. Perelman, D. Albagli, M. Dark, J. Schaffer, C. von Rosenberg, I. Itzkan, M. S. Feld, Proc. Soc. Photo-Opt. Instrum. Eng. 2134A, 144 (1994).

Walsh, J. T.

J. P. Cummings, J. T. Walsh, Appl. Phys. Lett. 62, 1988 (1993).
[CrossRef]

Appl. Phys. B (1)

V. V. Golovlyov, R. O. Esenaliev, V. S. Letokhov, Appl. Phys. B 57, 451 (1993).
[CrossRef]

Appl. Phys. Lett. (1)

J. P. Cummings, J. T. Walsh, Appl. Phys. Lett. 62, 1988 (1993).
[CrossRef]

Int. J. Frac. Mech. (1)

F. R. Tuler, B. M. Butcher, Int. J. Frac. Mech. 4, 431 (1968).

Laser Life Sci. (1)

D. Albagli, L. T. Perelman, G. S. Janes, C. von Rosenberg, I. Itzkan, M. S. Feld, Laser Life Sci. 6(1), 55 (1994).

Lasers Surg. Med. (1)

D. Albagli, B. Banish, M. Dark, G. S. Janes, C. von Rosenberg, L. T. Perelman, I. Itzkan, M. S. Feld, Lasers Surg. Med. 14,374 (1994).
[CrossRef] [PubMed]

Med. Phys. (1)

D. Albagli, M. Dark, C. von Rosenberg, L. T. Perelman, I. Itzkan, M. S. Feld, Med. Phys. 21,1323 (1994).
[CrossRef] [PubMed]

Proc. Soc. Photo-Opt. Instrum. Eng. (2)

L. T. Perelman, D. Albagli, M. Dark, J. Schaffer, C. von Rosenberg, I. Itzkan, M. S. Feld, Proc. Soc. Photo-Opt. Instrum. Eng. 2134A, 144 (1994).

S. L. Jacques, G. Gofstein, R. S. Dingus, Proc. Soc. Photo-Opt. Instrum. Eng. 1646,284 (1992).

Science (1)

R. Srinivasan, Science 234, 559 (1986).
[CrossRef] [PubMed]

Other (4)

A. A. Oraevsky, R. I. Esenaliev, V. S. Letokhov, in Laser Ablation, Mechanisms and Applications, J. C. Miller, R. F. Haglund, eds. (Springer-Verlag, Berlin, 1991), p. 112.
[CrossRef]

L. D. Landau, E. M. Lifshitz, Theory of Elasticity, 3rd ed. (Pergamon, Oxford, 1986), pp. 16–17, 87–88.

D. Potter, Computational Physics (Wiley, New York, 1977), pp. 63–75.

R. S. Dingus, R. J. Scammon, in Laser Ablation, Mechanisms and Applications, J. C. Miller, R. F. Haglund, eds. (Springer-Verlag, Berlin, 1991), p. 180.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Laser-induced thermoelastic expansion of two different glasses as a function of laser fluence is in agreement with the theoretically predicted expansion based on the known optical, mechanical, and thermal properties of the glasses.

Fig. 2
Fig. 2

Normalized thermoelastic expansion of glass as a function of time showing that, over this range of fluences, the optical and mechanical properties are constant. Again, the theoretical prediction agrees with the experimental data, including the fine details.

Fig. 3
Fig. 3

Computed radial stress on the surface of acrylic. Although the initial laser-induced radial stress is always compressive, the coupling of different stress components on the surface by the boundary conditions leads to the formation of significant tensile stresses. (Tension is positive; compression is negative.) (b) After several oscillations between tensile and compressive stress, the computed surface radial stress reaches a quasi-steady-state distribution. After 1400 ns, the numerical solution is in agreement with the analytical steady-state distribution.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

ρ 2 u t 2 - E 2 ( 1 + σ ) 2 u - E 2 ( 1 + σ ) ( 1 - 2 σ ) ( · u ) = - E β 3 ( 1 - 2 σ ) T ,

Metrics