Abstract

Effective medium theories are valuable tools that can provide effective refractive indices of composite media whose constituents are much smaller than the wavelength of the illuminating radiation. Extended theories have been developed to remove this limitation on the constituent size. Although these extended theories are not derived without additional limitations, useful regions of applicability do exist. We examine an extended effective-medium approximation and show that its predicted absorption efficiencies obtained agree well with exact theoretical results obtained for a naturally occurring system of interest, water droplets containing carbon inclusions.

© 1994 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. G. Maxwell-Garnett, Philos. Trans. R. Soc. London 203, 385 (1904).
    [CrossRef]
  2. D. A. G. Bruggeman, Ann. Phys. (Leipzig) 24, 636 (1935).
    [CrossRef]
  3. D. Stroud, F. P. Pan, Phys. Rev. B 17,1602 (1978).
    [CrossRef]
  4. G. A. Niklasson, G. G. Granqvist, O. Hunderi, Appl. Opt. 20, 26 (1981).
    [CrossRef] [PubMed]
  5. P. Chýlek, V. Srivastava, Phys. Rev. B 27, 5098 (1983).
    [CrossRef]
  6. P. Chýlek, V. Ramaswamy, R. Cheng, R. G. Pinnick, Appl. Opt. 20, 2980 (1981).
    [CrossRef] [PubMed]
  7. P. Chýlek, V. Ramaswamy, V. Srivastava, J. Geophys. Res. 88, 10,837 (1983).
    [CrossRef]
  8. P. Chýlek, V. Ramaswamy, R. Cheng, J. Atmos. Sci. 41, 3076 (1984).
    [CrossRef]
  9. P. Chýlek, B. R. D. Gupta, N. C. Knight, C. A. Knight, J. Climate Appl. Meteorol. 23, 1469 (1984).
    [CrossRef]
  10. C. F. Bohren, J. Atmos. Sci. 43, 468 (1986).
    [CrossRef]
  11. P. Chýlek, V. Srivastava, R. G. Pinnick, R. T. Wang, Appl. Opt. 27, 2396 (1988).
    [CrossRef]
  12. J. G. Fikioris, N. K. Uzunoglu, J. Opt. Soc. Am. 69, 1359 (1979).
    [CrossRef]
  13. F. Borghese, P. Denti, R. Saija, J. Opt. Soc. Am. A 9, 1327 (1992).
    [CrossRef]

1992 (1)

1988 (1)

1986 (1)

C. F. Bohren, J. Atmos. Sci. 43, 468 (1986).
[CrossRef]

1984 (2)

P. Chýlek, V. Ramaswamy, R. Cheng, J. Atmos. Sci. 41, 3076 (1984).
[CrossRef]

P. Chýlek, B. R. D. Gupta, N. C. Knight, C. A. Knight, J. Climate Appl. Meteorol. 23, 1469 (1984).
[CrossRef]

1983 (2)

P. Chýlek, V. Srivastava, Phys. Rev. B 27, 5098 (1983).
[CrossRef]

P. Chýlek, V. Ramaswamy, V. Srivastava, J. Geophys. Res. 88, 10,837 (1983).
[CrossRef]

1981 (2)

1979 (1)

1978 (1)

D. Stroud, F. P. Pan, Phys. Rev. B 17,1602 (1978).
[CrossRef]

1935 (1)

D. A. G. Bruggeman, Ann. Phys. (Leipzig) 24, 636 (1935).
[CrossRef]

1904 (1)

J. G. Maxwell-Garnett, Philos. Trans. R. Soc. London 203, 385 (1904).
[CrossRef]

Bohren, C. F.

C. F. Bohren, J. Atmos. Sci. 43, 468 (1986).
[CrossRef]

Borghese, F.

Bruggeman, D. A. G.

D. A. G. Bruggeman, Ann. Phys. (Leipzig) 24, 636 (1935).
[CrossRef]

Cheng, R.

Chýlek, P.

P. Chýlek, V. Srivastava, R. G. Pinnick, R. T. Wang, Appl. Opt. 27, 2396 (1988).
[CrossRef]

P. Chýlek, B. R. D. Gupta, N. C. Knight, C. A. Knight, J. Climate Appl. Meteorol. 23, 1469 (1984).
[CrossRef]

P. Chýlek, V. Ramaswamy, R. Cheng, J. Atmos. Sci. 41, 3076 (1984).
[CrossRef]

P. Chýlek, V. Srivastava, Phys. Rev. B 27, 5098 (1983).
[CrossRef]

P. Chýlek, V. Ramaswamy, V. Srivastava, J. Geophys. Res. 88, 10,837 (1983).
[CrossRef]

P. Chýlek, V. Ramaswamy, R. Cheng, R. G. Pinnick, Appl. Opt. 20, 2980 (1981).
[CrossRef] [PubMed]

Denti, P.

Fikioris, J. G.

Granqvist, G. G.

Gupta, B. R. D.

P. Chýlek, B. R. D. Gupta, N. C. Knight, C. A. Knight, J. Climate Appl. Meteorol. 23, 1469 (1984).
[CrossRef]

Hunderi, O.

Knight, C. A.

P. Chýlek, B. R. D. Gupta, N. C. Knight, C. A. Knight, J. Climate Appl. Meteorol. 23, 1469 (1984).
[CrossRef]

Knight, N. C.

P. Chýlek, B. R. D. Gupta, N. C. Knight, C. A. Knight, J. Climate Appl. Meteorol. 23, 1469 (1984).
[CrossRef]

Maxwell-Garnett, J. G.

J. G. Maxwell-Garnett, Philos. Trans. R. Soc. London 203, 385 (1904).
[CrossRef]

Niklasson, G. A.

Pan, F. P.

D. Stroud, F. P. Pan, Phys. Rev. B 17,1602 (1978).
[CrossRef]

Pinnick, R. G.

Ramaswamy, V.

P. Chýlek, V. Ramaswamy, R. Cheng, J. Atmos. Sci. 41, 3076 (1984).
[CrossRef]

P. Chýlek, V. Ramaswamy, V. Srivastava, J. Geophys. Res. 88, 10,837 (1983).
[CrossRef]

P. Chýlek, V. Ramaswamy, R. Cheng, R. G. Pinnick, Appl. Opt. 20, 2980 (1981).
[CrossRef] [PubMed]

Saija, R.

Srivastava, V.

P. Chýlek, V. Srivastava, R. G. Pinnick, R. T. Wang, Appl. Opt. 27, 2396 (1988).
[CrossRef]

P. Chýlek, V. Ramaswamy, V. Srivastava, J. Geophys. Res. 88, 10,837 (1983).
[CrossRef]

P. Chýlek, V. Srivastava, Phys. Rev. B 27, 5098 (1983).
[CrossRef]

Stroud, D.

D. Stroud, F. P. Pan, Phys. Rev. B 17,1602 (1978).
[CrossRef]

Uzunoglu, N. K.

Wang, R. T.

Ann. Phys. (1)

D. A. G. Bruggeman, Ann. Phys. (Leipzig) 24, 636 (1935).
[CrossRef]

Appl. Opt. (3)

J. Atmos. Sci. (2)

P. Chýlek, V. Ramaswamy, R. Cheng, J. Atmos. Sci. 41, 3076 (1984).
[CrossRef]

C. F. Bohren, J. Atmos. Sci. 43, 468 (1986).
[CrossRef]

J. Climate Appl. Meteorol. (1)

P. Chýlek, B. R. D. Gupta, N. C. Knight, C. A. Knight, J. Climate Appl. Meteorol. 23, 1469 (1984).
[CrossRef]

J. Geophys. Res. (1)

P. Chýlek, V. Ramaswamy, V. Srivastava, J. Geophys. Res. 88, 10,837 (1983).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (1)

Philos. Trans. R. Soc. London (1)

J. G. Maxwell-Garnett, Philos. Trans. R. Soc. London 203, 385 (1904).
[CrossRef]

Phys. Rev. B (2)

D. Stroud, F. P. Pan, Phys. Rev. B 17,1602 (1978).
[CrossRef]

P. Chýlek, V. Srivastava, Phys. Rev. B 27, 5098 (1983).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Geometry of the scattering system consisting of a host sphere containing a nonconcentric spherical inclusion.

Fig. 2
Fig. 2

Qabs as a function of the imaginary part of the refractive index of an a2 = λ/4 inclusion [Real(n2) = 1.45] enclosed by (a) an a1 = λ and (b) an a1 = 2 λ host sphere having n1 = 1.335 + 0.0i

Fig. 3
Fig. 3

Qabs as a function of the radius of a carbon (n2 = 1.94 + 0.66i) inclusion within (a) an a1 = λ and (b) an a1 = 2λ water host sphere having n1 = 1.335 + 0.0i.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Q abs = 3 2 ( a 1 - a 2 ) 3 0 π 0 a 1 - a 2 Q abs r 2 sin α d r d α .
σ 2 = 3 2 ( a 1 - a 2 ) 3 0 π 0 a 1 - a 2 Q abs 2 r 2 sin α d r d α - Q abs 2 .

Metrics