Abstract

Sihvola’s observation [Sihvola, Opt. Lett.19, 430 (1994)] of an analogy between various elements of the polarizability dyadics for anisotropic spheres and the polarizabilities of chiral spheres is critically examined. It is argued that this analogy is both physically and mathematically misconceived.

© 1994 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Lakhtakia, Int. J. Infrared Millimeter Waves 14, 2269 (1993).
    [CrossRef]
  2. A. H. Sihvola, Opt. Lett. 19, 430 (1994).
    [CrossRef] [PubMed]
  3. A general bianisotropic medium is characterized through constitutive relations D¯=∊¯¯·E¯+ξ¯¯·H¯ and B¯=ζ¯¯·E¯+μ¯¯·H¯; an (electrically) anisotropic medium by D¯=∊¯¯·E¯ and B̄ = μ0H̄; and a chiral medium through D¯=∊E¯-jκ∊0μ0H¯ and B¯=jκ∊0μ0E¯+μH¯.

1994 (1)

1993 (1)

A. Lakhtakia, Int. J. Infrared Millimeter Waves 14, 2269 (1993).
[CrossRef]

Lakhtakia, A.

A. Lakhtakia, Int. J. Infrared Millimeter Waves 14, 2269 (1993).
[CrossRef]

Sihvola, A. H.

Int. J. Infrared Millimeter Waves (1)

A. Lakhtakia, Int. J. Infrared Millimeter Waves 14, 2269 (1993).
[CrossRef]

Opt. Lett. (1)

Other (1)

A general bianisotropic medium is characterized through constitutive relations D¯=∊¯¯·E¯+ξ¯¯·H¯ and B¯=ζ¯¯·E¯+μ¯¯·H¯; an (electrically) anisotropic medium by D¯=∊¯¯·E¯ and B̄ = μ0H̄; and a chiral medium through D¯=∊E¯-jκ∊0μ0H¯ and B¯=jκ∊0μ0E¯+μH¯.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Equations (4)

Equations on this page are rendered with MathJax. Learn more.

¯ ¯ = x u ¯ x u ¯ x + y u ¯ y u ¯ y + z u ¯ z u ¯ z + g u ¯ z × I ¯ ¯ ,
a ¯ ¯ e e = [ α x x α x y 0 - α x y α y y 0 0 0 α z z ] ,             a ¯ ¯ e m = a ¯ ¯ m e = a ¯ ¯ m m = 0 ¯ ¯ .
a ¯ ¯ e e = α e e I ¯ ¯ ,             a ¯ ¯ e m = - a ¯ ¯ m e = α e m I ¯ ¯ ,             a ¯ ¯ m m = α m m I ¯ ¯
E ¯ H ¯ ,             H ¯ - E ¯ ,             ¯ ¯ μ ¯ ¯ , μ ¯ ¯ ¯ ¯ ,             ξ ¯ ¯ - ζ ¯ ¯ ,             ζ ¯ ¯ - ξ ¯ ¯ .

Metrics