Abstract

We investigate the limits of frequency resolution attainable in a nonlinear waveguide optical spectrometer, including the effects that are due to surface distortions and waveguide inhomogeneities, and demonstrate that the frequency-resolving capability is directly scalable with the radiating aperture length. The resolution of the waveguide is diffraction limited, and therefore the far-field radiation pattern can be used to characterize the phase variations along the waveguide that are due to surface distortions. The use of this device as a highly sensitive deformation sensor is demonstrated by application of a distortion to the waveguide and confirmation of the far-field diffraction pattern generated.

© 1994 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Vakhshoori, S. Wang, J. Lightwave Technol. 9, 906 (1991).
    [CrossRef]
  2. R. Normandin, S. Létourneau, F. Chatenoud, R. L. Williams, IEEE J. Quantum Electron. 27, 1520 (1991).
    [CrossRef]
  3. D. Vakhshoori, S. Wang, Appl. Phys. Lett. 53, 347 (1988).
    [CrossRef]
  4. H. Dai, S. Janz, R. Normandin, R. L. Williams, M. Dion, Electron. Lett. 28, 1540 (1992).
    [CrossRef]
  5. H. Dai, S. Janz, R. Normandin, F. Chatenoud, Can. J. Phys. 70, 921 (1992).
    [CrossRef]
  6. G. I. Stegeman, in Integrated Optical Circuits and Components: Design and Applications, L. D. Hutcheson, ed. (Dekker, New York, 1987), Chap. 9.
  7. M. Guy, B. Villeneuve, M. Svilans, M. Têtu, N. Cyr, Electron. Lett. 29, 975 (1993).
    [CrossRef]
  8. M. Guy, B. Villeneuve, M. Svilans, M. Têtu, N. Cyr, IEEE Photon. Technol. Lett. 6, 453 (1994).
    [CrossRef]
  9. R. Normandin, R. L. Williams, F. Chatenoud, Electron. Lett. 26, 2088 (1990).
    [CrossRef]
  10. R. Normandin, F. Chatenoud, R. L. Williams, in Nonlinear Optics: Materials, Phenomena, and Devices (Optical Society of America, Washington, D.C., 1990), p. 228.
    [CrossRef]
  11. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, 1968), Chaps. 4 and 5; p. 57.

1994 (1)

M. Guy, B. Villeneuve, M. Svilans, M. Têtu, N. Cyr, IEEE Photon. Technol. Lett. 6, 453 (1994).
[CrossRef]

1993 (1)

M. Guy, B. Villeneuve, M. Svilans, M. Têtu, N. Cyr, Electron. Lett. 29, 975 (1993).
[CrossRef]

1992 (2)

H. Dai, S. Janz, R. Normandin, R. L. Williams, M. Dion, Electron. Lett. 28, 1540 (1992).
[CrossRef]

H. Dai, S. Janz, R. Normandin, F. Chatenoud, Can. J. Phys. 70, 921 (1992).
[CrossRef]

1991 (2)

D. Vakhshoori, S. Wang, J. Lightwave Technol. 9, 906 (1991).
[CrossRef]

R. Normandin, S. Létourneau, F. Chatenoud, R. L. Williams, IEEE J. Quantum Electron. 27, 1520 (1991).
[CrossRef]

1990 (1)

R. Normandin, R. L. Williams, F. Chatenoud, Electron. Lett. 26, 2088 (1990).
[CrossRef]

1988 (1)

D. Vakhshoori, S. Wang, Appl. Phys. Lett. 53, 347 (1988).
[CrossRef]

Chatenoud, F.

H. Dai, S. Janz, R. Normandin, F. Chatenoud, Can. J. Phys. 70, 921 (1992).
[CrossRef]

R. Normandin, S. Létourneau, F. Chatenoud, R. L. Williams, IEEE J. Quantum Electron. 27, 1520 (1991).
[CrossRef]

R. Normandin, R. L. Williams, F. Chatenoud, Electron. Lett. 26, 2088 (1990).
[CrossRef]

R. Normandin, F. Chatenoud, R. L. Williams, in Nonlinear Optics: Materials, Phenomena, and Devices (Optical Society of America, Washington, D.C., 1990), p. 228.
[CrossRef]

Cyr, N.

M. Guy, B. Villeneuve, M. Svilans, M. Têtu, N. Cyr, IEEE Photon. Technol. Lett. 6, 453 (1994).
[CrossRef]

M. Guy, B. Villeneuve, M. Svilans, M. Têtu, N. Cyr, Electron. Lett. 29, 975 (1993).
[CrossRef]

Dai, H.

H. Dai, S. Janz, R. Normandin, F. Chatenoud, Can. J. Phys. 70, 921 (1992).
[CrossRef]

H. Dai, S. Janz, R. Normandin, R. L. Williams, M. Dion, Electron. Lett. 28, 1540 (1992).
[CrossRef]

Dion, M.

H. Dai, S. Janz, R. Normandin, R. L. Williams, M. Dion, Electron. Lett. 28, 1540 (1992).
[CrossRef]

Goodman, J. W.

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, 1968), Chaps. 4 and 5; p. 57.

Guy, M.

M. Guy, B. Villeneuve, M. Svilans, M. Têtu, N. Cyr, IEEE Photon. Technol. Lett. 6, 453 (1994).
[CrossRef]

M. Guy, B. Villeneuve, M. Svilans, M. Têtu, N. Cyr, Electron. Lett. 29, 975 (1993).
[CrossRef]

Janz, S.

H. Dai, S. Janz, R. Normandin, R. L. Williams, M. Dion, Electron. Lett. 28, 1540 (1992).
[CrossRef]

H. Dai, S. Janz, R. Normandin, F. Chatenoud, Can. J. Phys. 70, 921 (1992).
[CrossRef]

Létourneau, S.

R. Normandin, S. Létourneau, F. Chatenoud, R. L. Williams, IEEE J. Quantum Electron. 27, 1520 (1991).
[CrossRef]

Normandin, R.

H. Dai, S. Janz, R. Normandin, F. Chatenoud, Can. J. Phys. 70, 921 (1992).
[CrossRef]

H. Dai, S. Janz, R. Normandin, R. L. Williams, M. Dion, Electron. Lett. 28, 1540 (1992).
[CrossRef]

R. Normandin, S. Létourneau, F. Chatenoud, R. L. Williams, IEEE J. Quantum Electron. 27, 1520 (1991).
[CrossRef]

R. Normandin, R. L. Williams, F. Chatenoud, Electron. Lett. 26, 2088 (1990).
[CrossRef]

R. Normandin, F. Chatenoud, R. L. Williams, in Nonlinear Optics: Materials, Phenomena, and Devices (Optical Society of America, Washington, D.C., 1990), p. 228.
[CrossRef]

Stegeman, G. I.

G. I. Stegeman, in Integrated Optical Circuits and Components: Design and Applications, L. D. Hutcheson, ed. (Dekker, New York, 1987), Chap. 9.

Svilans, M.

M. Guy, B. Villeneuve, M. Svilans, M. Têtu, N. Cyr, IEEE Photon. Technol. Lett. 6, 453 (1994).
[CrossRef]

M. Guy, B. Villeneuve, M. Svilans, M. Têtu, N. Cyr, Electron. Lett. 29, 975 (1993).
[CrossRef]

Têtu, M.

M. Guy, B. Villeneuve, M. Svilans, M. Têtu, N. Cyr, IEEE Photon. Technol. Lett. 6, 453 (1994).
[CrossRef]

M. Guy, B. Villeneuve, M. Svilans, M. Têtu, N. Cyr, Electron. Lett. 29, 975 (1993).
[CrossRef]

Vakhshoori, D.

D. Vakhshoori, S. Wang, J. Lightwave Technol. 9, 906 (1991).
[CrossRef]

D. Vakhshoori, S. Wang, Appl. Phys. Lett. 53, 347 (1988).
[CrossRef]

Villeneuve, B.

M. Guy, B. Villeneuve, M. Svilans, M. Têtu, N. Cyr, IEEE Photon. Technol. Lett. 6, 453 (1994).
[CrossRef]

M. Guy, B. Villeneuve, M. Svilans, M. Têtu, N. Cyr, Electron. Lett. 29, 975 (1993).
[CrossRef]

Wang, S.

D. Vakhshoori, S. Wang, J. Lightwave Technol. 9, 906 (1991).
[CrossRef]

D. Vakhshoori, S. Wang, Appl. Phys. Lett. 53, 347 (1988).
[CrossRef]

Williams, R. L.

H. Dai, S. Janz, R. Normandin, R. L. Williams, M. Dion, Electron. Lett. 28, 1540 (1992).
[CrossRef]

R. Normandin, S. Létourneau, F. Chatenoud, R. L. Williams, IEEE J. Quantum Electron. 27, 1520 (1991).
[CrossRef]

R. Normandin, R. L. Williams, F. Chatenoud, Electron. Lett. 26, 2088 (1990).
[CrossRef]

R. Normandin, F. Chatenoud, R. L. Williams, in Nonlinear Optics: Materials, Phenomena, and Devices (Optical Society of America, Washington, D.C., 1990), p. 228.
[CrossRef]

Appl. Phys. Lett. (1)

D. Vakhshoori, S. Wang, Appl. Phys. Lett. 53, 347 (1988).
[CrossRef]

Can. J. Phys. (1)

H. Dai, S. Janz, R. Normandin, F. Chatenoud, Can. J. Phys. 70, 921 (1992).
[CrossRef]

Electron. Lett. (3)

M. Guy, B. Villeneuve, M. Svilans, M. Têtu, N. Cyr, Electron. Lett. 29, 975 (1993).
[CrossRef]

H. Dai, S. Janz, R. Normandin, R. L. Williams, M. Dion, Electron. Lett. 28, 1540 (1992).
[CrossRef]

R. Normandin, R. L. Williams, F. Chatenoud, Electron. Lett. 26, 2088 (1990).
[CrossRef]

IEEE J. Quantum Electron. (1)

R. Normandin, S. Létourneau, F. Chatenoud, R. L. Williams, IEEE J. Quantum Electron. 27, 1520 (1991).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

M. Guy, B. Villeneuve, M. Svilans, M. Têtu, N. Cyr, IEEE Photon. Technol. Lett. 6, 453 (1994).
[CrossRef]

J. Lightwave Technol. (1)

D. Vakhshoori, S. Wang, J. Lightwave Technol. 9, 906 (1991).
[CrossRef]

Other (3)

G. I. Stegeman, in Integrated Optical Circuits and Components: Design and Applications, L. D. Hutcheson, ed. (Dekker, New York, 1987), Chap. 9.

R. Normandin, F. Chatenoud, R. L. Williams, in Nonlinear Optics: Materials, Phenomena, and Devices (Optical Society of America, Washington, D.C., 1990), p. 228.
[CrossRef]

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, 1968), Chaps. 4 and 5; p. 57.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Experimental setup (see text for details).

Fig. 2
Fig. 2

Far-field diffraction pattern for a 34-GHz offset between the carrier and reference signals.

Fig. 3
Fig. 3

Far-field diffraction pattern for a dc offset between the carrier and reference signals.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

cos ( θ ) = β ω 1 - β ω 2 k ω 1 + ω 2 ,
λ Δ λ = n L λ ,
U = - 1 2 1 2 P exp [ i ϕ ( x ) ] exp ( - i 2 π λ f x x f ) d x ,
ϕ ( x ) = K 1 x + K 2 x 2 + K 3 x 3 ,
Δ x f = λ f K 1 L 2 π .

Metrics