Abstract

We show that white optical intensity noise is in general unevenly split between the signal and quadrature channels of a sinusoidally modulated fiber-optic gyroscope. At certain modulation depths this noise is almost totally relegated to the quadrature channel.

© 1994 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. K. Burns, R. P. Moeller, A. Dandridge, IEEE Photon. Technol. Lett. 2, 606 (1990).
    [CrossRef]
  2. J. Goodman, in Statistical Optics (Wiley, New York, 1985), pp. 481–486.
  3. H. C. Lefevre, S. Vatoux, M. Papuchon, C. Puech, Proc. Soc. Photo-Opt. Instrum. Eng. 719, 101 (1986).
  4. R. P. Moeller, W. K. Burns, Opt. Lett. 16, 1902 (1991).
    [CrossRef] [PubMed]
  5. S. L. A. Carrara, Proc. Soc. Photo-Opt. Instrum. Eng. 1267, 187 (1990).
  6. B. Szafraniec, J. Blake, “Polarization modulation errors in all-fiber depolarized gyroscopes,” J. Lightwave Technol. (to be published).

1991 (1)

1990 (2)

S. L. A. Carrara, Proc. Soc. Photo-Opt. Instrum. Eng. 1267, 187 (1990).

W. K. Burns, R. P. Moeller, A. Dandridge, IEEE Photon. Technol. Lett. 2, 606 (1990).
[CrossRef]

1986 (1)

H. C. Lefevre, S. Vatoux, M. Papuchon, C. Puech, Proc. Soc. Photo-Opt. Instrum. Eng. 719, 101 (1986).

Blake, J.

B. Szafraniec, J. Blake, “Polarization modulation errors in all-fiber depolarized gyroscopes,” J. Lightwave Technol. (to be published).

Burns, W. K.

R. P. Moeller, W. K. Burns, Opt. Lett. 16, 1902 (1991).
[CrossRef] [PubMed]

W. K. Burns, R. P. Moeller, A. Dandridge, IEEE Photon. Technol. Lett. 2, 606 (1990).
[CrossRef]

Carrara, S. L. A.

S. L. A. Carrara, Proc. Soc. Photo-Opt. Instrum. Eng. 1267, 187 (1990).

Dandridge, A.

W. K. Burns, R. P. Moeller, A. Dandridge, IEEE Photon. Technol. Lett. 2, 606 (1990).
[CrossRef]

Goodman, J.

J. Goodman, in Statistical Optics (Wiley, New York, 1985), pp. 481–486.

Lefevre, H. C.

H. C. Lefevre, S. Vatoux, M. Papuchon, C. Puech, Proc. Soc. Photo-Opt. Instrum. Eng. 719, 101 (1986).

Moeller, R. P.

R. P. Moeller, W. K. Burns, Opt. Lett. 16, 1902 (1991).
[CrossRef] [PubMed]

W. K. Burns, R. P. Moeller, A. Dandridge, IEEE Photon. Technol. Lett. 2, 606 (1990).
[CrossRef]

Papuchon, M.

H. C. Lefevre, S. Vatoux, M. Papuchon, C. Puech, Proc. Soc. Photo-Opt. Instrum. Eng. 719, 101 (1986).

Puech, C.

H. C. Lefevre, S. Vatoux, M. Papuchon, C. Puech, Proc. Soc. Photo-Opt. Instrum. Eng. 719, 101 (1986).

Szafraniec, B.

B. Szafraniec, J. Blake, “Polarization modulation errors in all-fiber depolarized gyroscopes,” J. Lightwave Technol. (to be published).

Vatoux, S.

H. C. Lefevre, S. Vatoux, M. Papuchon, C. Puech, Proc. Soc. Photo-Opt. Instrum. Eng. 719, 101 (1986).

IEEE Photon. Technol. Lett. (1)

W. K. Burns, R. P. Moeller, A. Dandridge, IEEE Photon. Technol. Lett. 2, 606 (1990).
[CrossRef]

Opt. Lett. (1)

Proc. Soc. Photo-Opt. Instrum. Eng. (2)

H. C. Lefevre, S. Vatoux, M. Papuchon, C. Puech, Proc. Soc. Photo-Opt. Instrum. Eng. 719, 101 (1986).

S. L. A. Carrara, Proc. Soc. Photo-Opt. Instrum. Eng. 1267, 187 (1990).

Other (2)

B. Szafraniec, J. Blake, “Polarization modulation errors in all-fiber depolarized gyroscopes,” J. Lightwave Technol. (to be published).

J. Goodman, in Statistical Optics (Wiley, New York, 1985), pp. 481–486.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Depolarized fiber gyro experimental setup. PZT, piezoelectric transducer; BPF, bandpass filter.

Fig. 2
Fig. 2

Noise power measured at the output of the band-pass filter as a function of modulation depth.

Fig. 3
Fig. 3

Noise power in the signal and quadrature channels versus modulation depth.

Fig. 4
Fig. 4

SNR versus modulation depth for RIN-dominated noise performance.

Fig. 5
Fig. 5

Heading swing of a depolarized fiber gyro by use of a 1.3-μm mode-hopping laser diode at two different modulation depths, showing the signal and quadrature channel outputs. Coil length, 1 km; coil diameter, 7.5 cm; time constant, 3 s (12 dB/octave).

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

n d ( t ) = n opt ( t ) g ( t ) ,
g ( t ) = 1 2 { 1 + cos [ ϕ m cos ( ω m t ) ] } .
N d ( f ) = F [ n opt ( t ) n opt ( t + τ ) g ( t ) g ( t + τ ) ]
= F [ R opt ( τ ) ] * F [ R g ( τ ) ] ,
N d ( f ) = 2 N { [ 1 + J 0 ( ϕ m ) ] 2 + 2 i = 1 [ J 2 i ( ϕ m ) ] 2 } .
I ( t ) = { I 0 + n = odd δ I ( n ω m ) cos [ n ω m t + ϕ ( n ω m ) ] } g ( t ) ,
n s ( t ) = 1 2 ( δ I ( ω m ) cos [ ϕ ( ω m ) ] [ 1 + J 0 ( ϕ m ) - J 2 ( ϕ m ) ] + i = 1 ( - 1 ) i δ I [ ( 2 i + 1 ) ω m ] cos { ϕ [ ( 2 i + 1 ) ω m ] } × [ J 2 i ( ϕ m ) - J 2 ( i + 1 ) ( ϕ m ) ] ) cos ( ω m t ) ,
n q ( t ) = - 1 2 ( δ I ( ω m ) sin [ ϕ ( ω m ) ] [ 1 + J 0 ( ϕ m ) + J 2 ( ϕ m ) ] + i = 1 ( - 1 ) i δ I [ ( 2 i + 1 ) ω m ] sin { ϕ ( 2 i + 1 ) ω m ] } × [ J 2 i ( ϕ m ) + J 2 ( i + 1 ) ( ϕ m ) ] ) sin ( ω m t ) .
N s ( ω m ) = N { [ 1 + J 0 ( ϕ m ) - J 2 ( ϕ m ) ] 2 + i = 1 [ J 2 i ( ϕ m ) - J 2 ( i + 1 ) ( ϕ m ) ] 2 } ,
N q ( ω m ) = N { [ 1 + J 0 ( ϕ m ) - J 2 ( ϕ m ) ] 2 + i = 1 [ J 2 i ( ϕ m ) - J 2 ( i + 1 ) ( ϕ m ) ] 2 } ,
SNR [ J 1 ( ϕ m ) ] 2 { [ 1 + J 0 ( ϕ m ) - J 2 ( ϕ m ) ] 2 + i = 1 [ J 2 i ( ϕ m ) - J 2 ( i + 1 ) ( ϕ m ) ] 2 } .

Metrics