Abstract

Cross-phase-modulation (XPM) effects were investigated as a novel nondegenerate method to control the spectrum of an optical pulse. The oscillating substructures in the XPM spectra were measured with a high-resolution optical spectral analysis system. The dispersion of the third-order nonlinearity was obtained by measurement and analysis of the XPM and self-phase-modulation spectra of the probe and pump pulses at different wavelengths.

© 1994 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. R. Alfano, S. L. Shapiro, Phys. Rev. Lett. 24, 584 (1970).R. R. Alfano, S. L. Shapiro, Phys. Rev. Lett. 24, 592 (1970); R. R. Alfano, S. L. Shapiro, Phys. Rev. Lett. 24, 1217, (1970).
    [CrossRef]
  2. Q. Z. Wang, P. P. Ho, R. R. Alfano, in The Supercontinuum Laser Source, R. R. Alfano, ed. (Springer-Verlag, New York, 1989), Chap. 2, pp. 33–90.
  3. R. R. Alfano, Q. X. Li, T. Jimbo, J. T. Manassah, P. P. Ho, Opt. Lett. 11, 626 (1986).
    [CrossRef] [PubMed]
  4. M. N. Islam, L. F. Mollenauer, R. H. Stolen, J. R. Simpson, H. T. Shang, Opt. Lett. 12, 625 (1987).
    [CrossRef] [PubMed]
  5. Q. Z. Wang, P. P. Ho, R. R. Alfano, Opt. Lett. 15, 1023 (1990).
    [CrossRef] [PubMed]
  6. R. R. Alfano, Q. Z. Wang, T. Jimbo, P. P. Ho, Phys. Rev. A 35, 459 (1987).
    [CrossRef] [PubMed]
  7. G. P. Agrawal, Nonlinear Fiber Optics (Academic, Boston, Mass., 1989), Chap. 7, p. 172.

1990

1987

1986

1970

R. R. Alfano, S. L. Shapiro, Phys. Rev. Lett. 24, 584 (1970).R. R. Alfano, S. L. Shapiro, Phys. Rev. Lett. 24, 592 (1970); R. R. Alfano, S. L. Shapiro, Phys. Rev. Lett. 24, 1217, (1970).
[CrossRef]

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics (Academic, Boston, Mass., 1989), Chap. 7, p. 172.

Alfano, R. R.

Q. Z. Wang, P. P. Ho, R. R. Alfano, Opt. Lett. 15, 1023 (1990).
[CrossRef] [PubMed]

R. R. Alfano, Q. Z. Wang, T. Jimbo, P. P. Ho, Phys. Rev. A 35, 459 (1987).
[CrossRef] [PubMed]

R. R. Alfano, Q. X. Li, T. Jimbo, J. T. Manassah, P. P. Ho, Opt. Lett. 11, 626 (1986).
[CrossRef] [PubMed]

R. R. Alfano, S. L. Shapiro, Phys. Rev. Lett. 24, 584 (1970).R. R. Alfano, S. L. Shapiro, Phys. Rev. Lett. 24, 592 (1970); R. R. Alfano, S. L. Shapiro, Phys. Rev. Lett. 24, 1217, (1970).
[CrossRef]

Q. Z. Wang, P. P. Ho, R. R. Alfano, in The Supercontinuum Laser Source, R. R. Alfano, ed. (Springer-Verlag, New York, 1989), Chap. 2, pp. 33–90.

Ho, P. P.

Q. Z. Wang, P. P. Ho, R. R. Alfano, Opt. Lett. 15, 1023 (1990).
[CrossRef] [PubMed]

R. R. Alfano, Q. Z. Wang, T. Jimbo, P. P. Ho, Phys. Rev. A 35, 459 (1987).
[CrossRef] [PubMed]

R. R. Alfano, Q. X. Li, T. Jimbo, J. T. Manassah, P. P. Ho, Opt. Lett. 11, 626 (1986).
[CrossRef] [PubMed]

Q. Z. Wang, P. P. Ho, R. R. Alfano, in The Supercontinuum Laser Source, R. R. Alfano, ed. (Springer-Verlag, New York, 1989), Chap. 2, pp. 33–90.

Islam, M. N.

Jimbo, T.

Li, Q. X.

Manassah, J. T.

Mollenauer, L. F.

Shang, H. T.

Shapiro, S. L.

R. R. Alfano, S. L. Shapiro, Phys. Rev. Lett. 24, 584 (1970).R. R. Alfano, S. L. Shapiro, Phys. Rev. Lett. 24, 592 (1970); R. R. Alfano, S. L. Shapiro, Phys. Rev. Lett. 24, 1217, (1970).
[CrossRef]

Simpson, J. R.

Stolen, R. H.

Wang, Q. Z.

Q. Z. Wang, P. P. Ho, R. R. Alfano, Opt. Lett. 15, 1023 (1990).
[CrossRef] [PubMed]

R. R. Alfano, Q. Z. Wang, T. Jimbo, P. P. Ho, Phys. Rev. A 35, 459 (1987).
[CrossRef] [PubMed]

Q. Z. Wang, P. P. Ho, R. R. Alfano, in The Supercontinuum Laser Source, R. R. Alfano, ed. (Springer-Verlag, New York, 1989), Chap. 2, pp. 33–90.

Opt. Lett.

Phys. Rev. A

R. R. Alfano, Q. Z. Wang, T. Jimbo, P. P. Ho, Phys. Rev. A 35, 459 (1987).
[CrossRef] [PubMed]

Phys. Rev. Lett.

R. R. Alfano, S. L. Shapiro, Phys. Rev. Lett. 24, 584 (1970).R. R. Alfano, S. L. Shapiro, Phys. Rev. Lett. 24, 592 (1970); R. R. Alfano, S. L. Shapiro, Phys. Rev. Lett. 24, 1217, (1970).
[CrossRef]

Other

Q. Z. Wang, P. P. Ho, R. R. Alfano, in The Supercontinuum Laser Source, R. R. Alfano, ed. (Springer-Verlag, New York, 1989), Chap. 2, pp. 33–90.

G. P. Agrawal, Nonlinear Fiber Optics (Academic, Boston, Mass., 1989), Chap. 7, p. 172.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Experimental arrangement: F1, a set of color and neutral-density filters; F2–F3, neutral-density filters; L1 L2, 20 × microscope objectives; L3, lens; BS’s, beam splitters; D1, D2, detectors; M’s, mirrors. Inset: The pulse shape of the 532-nm laser pulse generated from the laser system. The laser pulse is slightly asymmetric. The leading edge is shorter than the trailing edge. The dashed curve shows a theoretical fit to the pulse.

Fig. 2
Fig. 2

Video display of the SPM spectra of the pump pulse at 1064 nm and the XPM spectra of the probe pulse at 532 nm propagating in 1-m, 4-μm-core optical fiber with different initial time delays between the pump and probe pulses: (a) input laser linewidth, (b) td= 0 ps, (c) td = 31 ps, (d) td = 63 ps, (e) SPM spectrum of the pump pulse. The peak power of the pump pulse is ~2000 W

Fig. 3
Fig. 3

SPM of the pump pulse at 1064 nm and XPM spectra of the probe pulse at 532 nm propagating in an optical fiber with different initial time delays. The left-hand column shows the experimental results, and the right-hand column shows the theoretical calculations. The core diameter of the optical fiber was 4 μm, and n2 = 3.2 × 10−16 cm2/W for 532 nm and n2 = 1.79 × 10−16 cm2/W for 1064 nm. (a) Input laser pulse, (b) td = 0 ps, (c) td = 31 ps, (d) td = 63 ps. The peak power of the pump pulse is 2000 W.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

A 1 z + 1 υ g 1 A 1 t + i 1 2 k 1 ( 2 ) 2 A 1 t 2 = i ω 1 n 2 ( ω 1 ) c ( A 1 2 + 2 A 2 2 ) A 1 ,
A 2 z + 1 υ g 2 A 2 t + i 1 2 k 2 ( 2 ) 2 A 2 t 2 = i ω 2 n 2 ( ω 2 ) c ( A 2 2 + 2 A 1 2 ) A 2 ,
A i ( z , τ ) = a i ( z , τ ) exp [ i α i ( z , τ ) ] ,
a 1 z = 0 ,
α 1 z = ω 1 n 2 ( ω 1 ) c ( a 1 2 + 2 a 2 2 ) ,
a 2 z + ( 1 ω g 2 - 1 ω g 1 ) a 2 τ = 0 ,
α 2 z = ω 2 n 2 ( ω 2 ) c ( 2 a 1 2 + a 2 2 ) .
a 1 ( T ) = a 10 F 1 ( T ) ,
α 1 ( L , T ) = ω 1 n 2 ( ω 1 ) c L × [ a 10 2 F 1 2 ( T ) + 2 L a 20 2 0 L F 2 2 ( T - z / L w ) d z ] ,
a 2 ( T ) = a 20 F 2 ( T ) ,
α 2 ( L , T ) = ω 2 n 2 ( ω 2 ) c L × [ a 20 2 F 2 2 ( T ) + 2 L a 10 2 0 L F 1 2 ( T + z / L w ) d z ] ,
E i ( z , ω - ω 0 ) = 1 2 π a i ( τ , z ) × exp [ i α i ( τ , z ) ] exp [ i ( ω - ω i ) τ ] d τ .

Metrics