Abstract

Acceptable values for filter bandwidth and amplifier output power are determined by means of numerical simulations under the criteria of tolerable maximum standard deviation of timing jitters and minimum Q factor for fixed and sliding-frequency in-line filters. The results, for chromatic dispersion values usually encountered in published experiments, represented by isojitters and iso-Q factors clearly show the existence of an optimum design area. From these diagrams, the optimum bandwidth can be obtained for the largest power margin. We also analyze power margins with increasing sliding rates of in-line filters. In our simulations we obtain a 1.5-dB power margin with fixed filters and a 3-dB power margin with sliding filters.

© 1994 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. P. Gordon, H. A. Haus, Opt. Lett. 11, 665 (1986).
    [CrossRef] [PubMed]
  2. A. Mecozzi, J. D. Moores, H. A. Haus, Y. Lai, J. Opt. Soc. Am. B 9, 1350 (1992).
    [CrossRef]
  3. M. Nakazawa, E. Yamada, H. Kubota, K. Suzuki, Electron. Lett. 27, 1270 (1991).
    [CrossRef]
  4. L. F. Mollenauer, J. P. Gordon, S. G. Evangelides, Opt. Lett. 17, 1575 (1992).
    [CrossRef] [PubMed]
  5. G. P. Agrawal, Nonlinear Fiber Optics (Academic, San Diego, Calif., 1989), Chap. 2, p. 44.
  6. L. F. Mollenauer, E. Litchman, M. J. Neubalt, G. T. Harvey, Electron. Lett. 29, 910 (1993).
    [CrossRef]
  7. J. P. Gordon, L. F. Mollenauer, J. Lightwave Technol. 9, 170 (1991).
    [CrossRef]
  8. N. A. Olsson, J. Lightwave Technol. 7, 1071 (1989).
    [CrossRef]

1993 (1)

L. F. Mollenauer, E. Litchman, M. J. Neubalt, G. T. Harvey, Electron. Lett. 29, 910 (1993).
[CrossRef]

1992 (2)

1991 (2)

M. Nakazawa, E. Yamada, H. Kubota, K. Suzuki, Electron. Lett. 27, 1270 (1991).
[CrossRef]

J. P. Gordon, L. F. Mollenauer, J. Lightwave Technol. 9, 170 (1991).
[CrossRef]

1989 (1)

N. A. Olsson, J. Lightwave Technol. 7, 1071 (1989).
[CrossRef]

1986 (1)

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics (Academic, San Diego, Calif., 1989), Chap. 2, p. 44.

Evangelides, S. G.

Gordon, J. P.

Harvey, G. T.

L. F. Mollenauer, E. Litchman, M. J. Neubalt, G. T. Harvey, Electron. Lett. 29, 910 (1993).
[CrossRef]

Haus, H. A.

Kubota, H.

M. Nakazawa, E. Yamada, H. Kubota, K. Suzuki, Electron. Lett. 27, 1270 (1991).
[CrossRef]

Lai, Y.

Litchman, E.

L. F. Mollenauer, E. Litchman, M. J. Neubalt, G. T. Harvey, Electron. Lett. 29, 910 (1993).
[CrossRef]

Mecozzi, A.

Mollenauer, L. F.

L. F. Mollenauer, E. Litchman, M. J. Neubalt, G. T. Harvey, Electron. Lett. 29, 910 (1993).
[CrossRef]

L. F. Mollenauer, J. P. Gordon, S. G. Evangelides, Opt. Lett. 17, 1575 (1992).
[CrossRef] [PubMed]

J. P. Gordon, L. F. Mollenauer, J. Lightwave Technol. 9, 170 (1991).
[CrossRef]

Moores, J. D.

Nakazawa, M.

M. Nakazawa, E. Yamada, H. Kubota, K. Suzuki, Electron. Lett. 27, 1270 (1991).
[CrossRef]

Neubalt, M. J.

L. F. Mollenauer, E. Litchman, M. J. Neubalt, G. T. Harvey, Electron. Lett. 29, 910 (1993).
[CrossRef]

Olsson, N. A.

N. A. Olsson, J. Lightwave Technol. 7, 1071 (1989).
[CrossRef]

Suzuki, K.

M. Nakazawa, E. Yamada, H. Kubota, K. Suzuki, Electron. Lett. 27, 1270 (1991).
[CrossRef]

Yamada, E.

M. Nakazawa, E. Yamada, H. Kubota, K. Suzuki, Electron. Lett. 27, 1270 (1991).
[CrossRef]

Electron. Lett. (2)

L. F. Mollenauer, E. Litchman, M. J. Neubalt, G. T. Harvey, Electron. Lett. 29, 910 (1993).
[CrossRef]

M. Nakazawa, E. Yamada, H. Kubota, K. Suzuki, Electron. Lett. 27, 1270 (1991).
[CrossRef]

J. Lightwave Technol. (2)

J. P. Gordon, L. F. Mollenauer, J. Lightwave Technol. 9, 170 (1991).
[CrossRef]

N. A. Olsson, J. Lightwave Technol. 7, 1071 (1989).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Lett. (2)

Other (1)

G. P. Agrawal, Nonlinear Fiber Optics (Academic, San Diego, Calif., 1989), Chap. 2, p. 44.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Isojitters in picoseconds and (b) iso-Q factors versus filter bandwidth and relative amplifier output power at the end of a 9000-km-long transmission line for fixed-frequency filters.

Fig. 2
Fig. 2

(a) Isojitters in picoseconds and (b) iso-Q factors versus filter bandwidth and relative amplifier output power at the end of a 9000-km-long transmission line for sliding-frequency filters with an 8-GHz/Mm sliding rate.

Fig. 3
Fig. 3

(a) Isojitters in picoseconds and (b) iso-Q factors versus sliding-frequency rate and relative amplifier output power at the end of a 9000-km-long transmission line with a 1.0-nm filter.

Fig. 4
Fig. 4

Minimum (dotted curve) and maximum (dashed curve) acceptable relative amplifier output powers and power margins (solid curve) versus sliding-frequency rates for a transmission line of 9000 km and 1.0-nm in-line filters with a tolerable standard deviation of timing jitter of 5 ps and a Q factor of 12.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Q = μ i - μ 0 σ 1 + σ 0 ,

Metrics