Abstract

Single-crystal films of 2-cyclooctylamino-5-nitropyridine have been prepared by the shear method, and the second-order susceptibility has been measured by second-harmonic generation. Polarization-dependent measurements in an a plate show that the maximum value of deff (~56 pm/V) is approximately 10 times larger than that of LiNbO3 and that the ratio d32/d33 is approximately −4 at a 1064-nm wavelength. This material has a phase-matching direction (type I only) for propagation parallel to the plane of the a plate. The results of these measurements are important for phase-matched second-harmonic generation in waveguides of this material.

© 1994 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Zyss, in Conjugated Polymeric Materials: Opportunities in Electronics, Optoelectronics, and Molecular Electronics, J. L. Brédas, R. R. Chance, eds. (Kluwer, Dordrecht, The Netherlands, 1990), p. 545.
  2. G. T. Boyd, J. Opt. Soc. Am. B 6, 685 (1989).
    [CrossRef]
  3. R. Lytel, G. F. Lipscomb, J. Thackara, J. Altman, P. Elizondo, M. Stiller, B. Sullivan, in Nonlinear Optical and Electroactive Polymers, P. N. Prasad, D. R. Ulrich, eds. (Plenum, New York, 1988), p. 415.
    [CrossRef]
  4. See, for example, D. S. Chemla, J. Zyss, eds., Nonlinear Optical Properties of Organic Molecules and Crystals (Academic, New York, 1987), Vol. 1.
  5. M. Thakur, Y. Shani, G. C. Chi, K. O’Brien, Synth. Met. 8, D595 (1989).
    [CrossRef]
  6. M. Thakur, S. Meyler, Macromolecules 18, 2341 (1985).
    [CrossRef]
  7. P. Günter, Ch. Bosshard, K. Sutter, H. Arend, G. Chapuis, R. J. Twieg, D. Dobrowolski, Appl. Phys. Lett. 50, 486 (1987).
    [CrossRef]
  8. D. F. Eaton, ACS Symp. Ser. 455, 128 (1991).
    [CrossRef]
  9. M. V. Hobden, J. Appl. Phys. 38, 4365 (1967).
    [CrossRef]
  10. P. N. Butcher, D. Cotter, The Elements of Nonlinear Optics (Cambridge U. Press, Cambridge, 1990), Apps. 3 and 4.

1991 (1)

D. F. Eaton, ACS Symp. Ser. 455, 128 (1991).
[CrossRef]

1989 (2)

G. T. Boyd, J. Opt. Soc. Am. B 6, 685 (1989).
[CrossRef]

M. Thakur, Y. Shani, G. C. Chi, K. O’Brien, Synth. Met. 8, D595 (1989).
[CrossRef]

1987 (1)

P. Günter, Ch. Bosshard, K. Sutter, H. Arend, G. Chapuis, R. J. Twieg, D. Dobrowolski, Appl. Phys. Lett. 50, 486 (1987).
[CrossRef]

1985 (1)

M. Thakur, S. Meyler, Macromolecules 18, 2341 (1985).
[CrossRef]

1967 (1)

M. V. Hobden, J. Appl. Phys. 38, 4365 (1967).
[CrossRef]

Altman, J.

R. Lytel, G. F. Lipscomb, J. Thackara, J. Altman, P. Elizondo, M. Stiller, B. Sullivan, in Nonlinear Optical and Electroactive Polymers, P. N. Prasad, D. R. Ulrich, eds. (Plenum, New York, 1988), p. 415.
[CrossRef]

Arend, H.

P. Günter, Ch. Bosshard, K. Sutter, H. Arend, G. Chapuis, R. J. Twieg, D. Dobrowolski, Appl. Phys. Lett. 50, 486 (1987).
[CrossRef]

Bosshard, Ch.

P. Günter, Ch. Bosshard, K. Sutter, H. Arend, G. Chapuis, R. J. Twieg, D. Dobrowolski, Appl. Phys. Lett. 50, 486 (1987).
[CrossRef]

Boyd, G. T.

Butcher, P. N.

P. N. Butcher, D. Cotter, The Elements of Nonlinear Optics (Cambridge U. Press, Cambridge, 1990), Apps. 3 and 4.

Chapuis, G.

P. Günter, Ch. Bosshard, K. Sutter, H. Arend, G. Chapuis, R. J. Twieg, D. Dobrowolski, Appl. Phys. Lett. 50, 486 (1987).
[CrossRef]

Chi, G. C.

M. Thakur, Y. Shani, G. C. Chi, K. O’Brien, Synth. Met. 8, D595 (1989).
[CrossRef]

Cotter, D.

P. N. Butcher, D. Cotter, The Elements of Nonlinear Optics (Cambridge U. Press, Cambridge, 1990), Apps. 3 and 4.

Dobrowolski, D.

P. Günter, Ch. Bosshard, K. Sutter, H. Arend, G. Chapuis, R. J. Twieg, D. Dobrowolski, Appl. Phys. Lett. 50, 486 (1987).
[CrossRef]

Eaton, D. F.

D. F. Eaton, ACS Symp. Ser. 455, 128 (1991).
[CrossRef]

Elizondo, P.

R. Lytel, G. F. Lipscomb, J. Thackara, J. Altman, P. Elizondo, M. Stiller, B. Sullivan, in Nonlinear Optical and Electroactive Polymers, P. N. Prasad, D. R. Ulrich, eds. (Plenum, New York, 1988), p. 415.
[CrossRef]

Günter, P.

P. Günter, Ch. Bosshard, K. Sutter, H. Arend, G. Chapuis, R. J. Twieg, D. Dobrowolski, Appl. Phys. Lett. 50, 486 (1987).
[CrossRef]

Hobden, M. V.

M. V. Hobden, J. Appl. Phys. 38, 4365 (1967).
[CrossRef]

Lipscomb, G. F.

R. Lytel, G. F. Lipscomb, J. Thackara, J. Altman, P. Elizondo, M. Stiller, B. Sullivan, in Nonlinear Optical and Electroactive Polymers, P. N. Prasad, D. R. Ulrich, eds. (Plenum, New York, 1988), p. 415.
[CrossRef]

Lytel, R.

R. Lytel, G. F. Lipscomb, J. Thackara, J. Altman, P. Elizondo, M. Stiller, B. Sullivan, in Nonlinear Optical and Electroactive Polymers, P. N. Prasad, D. R. Ulrich, eds. (Plenum, New York, 1988), p. 415.
[CrossRef]

Meyler, S.

M. Thakur, S. Meyler, Macromolecules 18, 2341 (1985).
[CrossRef]

O’Brien, K.

M. Thakur, Y. Shani, G. C. Chi, K. O’Brien, Synth. Met. 8, D595 (1989).
[CrossRef]

Shani, Y.

M. Thakur, Y. Shani, G. C. Chi, K. O’Brien, Synth. Met. 8, D595 (1989).
[CrossRef]

Stiller, M.

R. Lytel, G. F. Lipscomb, J. Thackara, J. Altman, P. Elizondo, M. Stiller, B. Sullivan, in Nonlinear Optical and Electroactive Polymers, P. N. Prasad, D. R. Ulrich, eds. (Plenum, New York, 1988), p. 415.
[CrossRef]

Sullivan, B.

R. Lytel, G. F. Lipscomb, J. Thackara, J. Altman, P. Elizondo, M. Stiller, B. Sullivan, in Nonlinear Optical and Electroactive Polymers, P. N. Prasad, D. R. Ulrich, eds. (Plenum, New York, 1988), p. 415.
[CrossRef]

Sutter, K.

P. Günter, Ch. Bosshard, K. Sutter, H. Arend, G. Chapuis, R. J. Twieg, D. Dobrowolski, Appl. Phys. Lett. 50, 486 (1987).
[CrossRef]

Thackara, J.

R. Lytel, G. F. Lipscomb, J. Thackara, J. Altman, P. Elizondo, M. Stiller, B. Sullivan, in Nonlinear Optical and Electroactive Polymers, P. N. Prasad, D. R. Ulrich, eds. (Plenum, New York, 1988), p. 415.
[CrossRef]

Thakur, M.

M. Thakur, Y. Shani, G. C. Chi, K. O’Brien, Synth. Met. 8, D595 (1989).
[CrossRef]

M. Thakur, S. Meyler, Macromolecules 18, 2341 (1985).
[CrossRef]

Twieg, R. J.

P. Günter, Ch. Bosshard, K. Sutter, H. Arend, G. Chapuis, R. J. Twieg, D. Dobrowolski, Appl. Phys. Lett. 50, 486 (1987).
[CrossRef]

Zyss, J.

J. Zyss, in Conjugated Polymeric Materials: Opportunities in Electronics, Optoelectronics, and Molecular Electronics, J. L. Brédas, R. R. Chance, eds. (Kluwer, Dordrecht, The Netherlands, 1990), p. 545.

ACS Symp. Ser. (1)

D. F. Eaton, ACS Symp. Ser. 455, 128 (1991).
[CrossRef]

Appl. Phys. Lett. (1)

P. Günter, Ch. Bosshard, K. Sutter, H. Arend, G. Chapuis, R. J. Twieg, D. Dobrowolski, Appl. Phys. Lett. 50, 486 (1987).
[CrossRef]

J. Appl. Phys. (1)

M. V. Hobden, J. Appl. Phys. 38, 4365 (1967).
[CrossRef]

J. Opt. Soc. Am. B (1)

Macromolecules (1)

M. Thakur, S. Meyler, Macromolecules 18, 2341 (1985).
[CrossRef]

Synth. Met. (1)

M. Thakur, Y. Shani, G. C. Chi, K. O’Brien, Synth. Met. 8, D595 (1989).
[CrossRef]

Other (4)

J. Zyss, in Conjugated Polymeric Materials: Opportunities in Electronics, Optoelectronics, and Molecular Electronics, J. L. Brédas, R. R. Chance, eds. (Kluwer, Dordrecht, The Netherlands, 1990), p. 545.

R. Lytel, G. F. Lipscomb, J. Thackara, J. Altman, P. Elizondo, M. Stiller, B. Sullivan, in Nonlinear Optical and Electroactive Polymers, P. N. Prasad, D. R. Ulrich, eds. (Plenum, New York, 1988), p. 415.
[CrossRef]

See, for example, D. S. Chemla, J. Zyss, eds., Nonlinear Optical Properties of Organic Molecules and Crystals (Academic, New York, 1987), Vol. 1.

P. N. Butcher, D. Cotter, The Elements of Nonlinear Optics (Cambridge U. Press, Cambridge, 1990), Apps. 3 and 4.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Thin single-crystal film of COANP prepared by the shear method.

Fig. 2
Fig. 2

Experimental setup for the measurement of SHG. M, modulator; P’s, polarizers; F’s, filters; PD’s, photodiodes; HBS, harmonic beam splitter; LOCK-IN, lock-in amplifier.

Fig. 3
Fig. 3

Second-harmonic power as a function of the orientation angle of the crystal film with respect to the input polarization. The measurement has been made with the input and output polarizations at right angles to each other and while the crystal film is rotated in a plane perpendicular to the propagation direction of the beam. (a) Experimental results and (b) calculated results from Eq. (2).

Fig. 4
Fig. 4

Second-harmonic power as a function of the orientation angle of the crystal film with respect to the input polarization. The measurement has been made with both input and output polarizations parallel to each other, (a) Experimental results and (b) calculated results from Eq. (2).

Fig. 5
Fig. 5

Effective second-harmonic power as a function of the orientation angle of the crystal film with respect to the input polarization. No polarizer was used at the output. (a) Experimental results and (b) calculated results from Eq. (2).

Fig. 6
Fig. 6

Calculated effective second-harmonic power as a function of the thickness and the orientation of the crystal film. If the thickness of the film is increased, the effect of phase mismatch needs to be considered, and thus the effective second-harmonic power is altered.

Tables (1)

Tables Icon

Table 1 Crystal and Optical Parameters of COANPa

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

( P 2 ω ) i = j k ( l m n a l i a m j a n k d l m n ) E j E k ,
d y z z = ( d 232 + d 223 d 33 ) cos 2 θ sin θ d 322 sin 3 θ , d z z z = ( d 232 + d 223 + d 322 ) cos θ sin 2 θ + d 33 cos 3 θ , d eff 2 = d y z z 2 + d z z z 2 ,

Metrics