Abstract

Optoelectronic communication with high data rates requires a clock distribution without a time skew. We propose an approach for a optical clock distribution to boards, with a time skew well below 10 ps, using ellipsoidal mirrors placed at positions determined by a set of ellipses. For this purpose a fan-out element is necessary, which generates a set of fan-out beams with defined angles and equal (or well-defined) intensities. Because of their high flexibility in design, diffractive optical elements are well suited as fan-out elements.

© 1994 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. J. Walker, J. Jahns, Opt. Commun. 1, 359 (1992).
    [CrossRef]
  2. J. W. Goodman, F. Leonberger, S. Y. Kung, R. Athale, Proc. IEEE 72, 850 (1984).
    [CrossRef]
  3. B. D. Clymer, J. W. Goodman, Opt. Eng. 25, 101103 (1986).
  4. H. Dammann, K. Görtler, Opt. Commun. 3, 312 (1971).
    [CrossRef]
  5. H. Kobolla, J. Schmidt, J. T. Sheridan, N. Streibl, R. Völkel, J. Mod. Opt. 39, 881 (1992).
    [CrossRef]
  6. N. Lindlein, J. Schwider, Pure Appl. Opt. 1, 111 (1992).
    [CrossRef]
  7. U. Krackhardt, N. Streibl, Opt. Commun. 74, 31 (1989).
    [CrossRef]
  8. G. Groh, Appl. Opt. 7, 1643 (1968).
    [CrossRef] [PubMed]
  9. H. P. Herzig, D. Prongue, R. Dändliker, Appl. Opt. 30, 5716 (1992).
    [CrossRef]

1992 (4)

S. J. Walker, J. Jahns, Opt. Commun. 1, 359 (1992).
[CrossRef]

H. Kobolla, J. Schmidt, J. T. Sheridan, N. Streibl, R. Völkel, J. Mod. Opt. 39, 881 (1992).
[CrossRef]

N. Lindlein, J. Schwider, Pure Appl. Opt. 1, 111 (1992).
[CrossRef]

H. P. Herzig, D. Prongue, R. Dändliker, Appl. Opt. 30, 5716 (1992).
[CrossRef]

1989 (1)

U. Krackhardt, N. Streibl, Opt. Commun. 74, 31 (1989).
[CrossRef]

1986 (1)

B. D. Clymer, J. W. Goodman, Opt. Eng. 25, 101103 (1986).

1984 (1)

J. W. Goodman, F. Leonberger, S. Y. Kung, R. Athale, Proc. IEEE 72, 850 (1984).
[CrossRef]

1971 (1)

H. Dammann, K. Görtler, Opt. Commun. 3, 312 (1971).
[CrossRef]

1968 (1)

Athale, R.

J. W. Goodman, F. Leonberger, S. Y. Kung, R. Athale, Proc. IEEE 72, 850 (1984).
[CrossRef]

Clymer, B. D.

B. D. Clymer, J. W. Goodman, Opt. Eng. 25, 101103 (1986).

Dammann, H.

H. Dammann, K. Görtler, Opt. Commun. 3, 312 (1971).
[CrossRef]

Dändliker, R.

H. P. Herzig, D. Prongue, R. Dändliker, Appl. Opt. 30, 5716 (1992).
[CrossRef]

Goodman, J. W.

B. D. Clymer, J. W. Goodman, Opt. Eng. 25, 101103 (1986).

J. W. Goodman, F. Leonberger, S. Y. Kung, R. Athale, Proc. IEEE 72, 850 (1984).
[CrossRef]

Görtler, K.

H. Dammann, K. Görtler, Opt. Commun. 3, 312 (1971).
[CrossRef]

Groh, G.

Herzig, H. P.

H. P. Herzig, D. Prongue, R. Dändliker, Appl. Opt. 30, 5716 (1992).
[CrossRef]

Jahns, J.

S. J. Walker, J. Jahns, Opt. Commun. 1, 359 (1992).
[CrossRef]

Kobolla, H.

H. Kobolla, J. Schmidt, J. T. Sheridan, N. Streibl, R. Völkel, J. Mod. Opt. 39, 881 (1992).
[CrossRef]

Krackhardt, U.

U. Krackhardt, N. Streibl, Opt. Commun. 74, 31 (1989).
[CrossRef]

Kung, S. Y.

J. W. Goodman, F. Leonberger, S. Y. Kung, R. Athale, Proc. IEEE 72, 850 (1984).
[CrossRef]

Leonberger, F.

J. W. Goodman, F. Leonberger, S. Y. Kung, R. Athale, Proc. IEEE 72, 850 (1984).
[CrossRef]

Lindlein, N.

N. Lindlein, J. Schwider, Pure Appl. Opt. 1, 111 (1992).
[CrossRef]

Prongue, D.

H. P. Herzig, D. Prongue, R. Dändliker, Appl. Opt. 30, 5716 (1992).
[CrossRef]

Schmidt, J.

H. Kobolla, J. Schmidt, J. T. Sheridan, N. Streibl, R. Völkel, J. Mod. Opt. 39, 881 (1992).
[CrossRef]

Schwider, J.

N. Lindlein, J. Schwider, Pure Appl. Opt. 1, 111 (1992).
[CrossRef]

Sheridan, J. T.

H. Kobolla, J. Schmidt, J. T. Sheridan, N. Streibl, R. Völkel, J. Mod. Opt. 39, 881 (1992).
[CrossRef]

Streibl, N.

H. Kobolla, J. Schmidt, J. T. Sheridan, N. Streibl, R. Völkel, J. Mod. Opt. 39, 881 (1992).
[CrossRef]

U. Krackhardt, N. Streibl, Opt. Commun. 74, 31 (1989).
[CrossRef]

Völkel, R.

H. Kobolla, J. Schmidt, J. T. Sheridan, N. Streibl, R. Völkel, J. Mod. Opt. 39, 881 (1992).
[CrossRef]

Walker, S. J.

S. J. Walker, J. Jahns, Opt. Commun. 1, 359 (1992).
[CrossRef]

Appl. Opt. (2)

G. Groh, Appl. Opt. 7, 1643 (1968).
[CrossRef] [PubMed]

H. P. Herzig, D. Prongue, R. Dändliker, Appl. Opt. 30, 5716 (1992).
[CrossRef]

J. Mod. Opt. (1)

H. Kobolla, J. Schmidt, J. T. Sheridan, N. Streibl, R. Völkel, J. Mod. Opt. 39, 881 (1992).
[CrossRef]

Opt. Commun. (3)

S. J. Walker, J. Jahns, Opt. Commun. 1, 359 (1992).
[CrossRef]

H. Dammann, K. Görtler, Opt. Commun. 3, 312 (1971).
[CrossRef]

U. Krackhardt, N. Streibl, Opt. Commun. 74, 31 (1989).
[CrossRef]

Opt. Eng. (1)

B. D. Clymer, J. W. Goodman, Opt. Eng. 25, 101103 (1986).

Proc. IEEE (1)

J. W. Goodman, F. Leonberger, S. Y. Kung, R. Athale, Proc. IEEE 72, 850 (1984).
[CrossRef]

Pure Appl. Opt. (1)

N. Lindlein, J. Schwider, Pure Appl. Opt. 1, 111 (1992).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Scheme of a synchronous optical clock distribution to boards that uses a reflecting parabola. PD’s, photodetectors; LD, laser diode.

Fig. 2
Fig. 2

Fan-out element based on the principle of aperture division. A lenslet array is used for producing the fan-out directions.

Fig. 3
Fig. 3

Principle of a synchronous optical clock distribution that uses ellipsoidal mirrors placed at positions given by a set of ellipses.

Fig. 4
Fig. 4

Ray-tracing calculation of the light propagation within the optical system.

Fig. 5
Fig. 5

Imaging properties of the system for five selected points of the fan-out aperture. Spot S1 is identical to the focus of the ellipsoid. With increasing distance from the focus the point images are aberrated.

Fig. 6
Fig. 6

Design for a hybrid fan-out element. A Dammann grating and a volume grating are stacked.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

tan δ m = e m / b m ,
sin δ m = e m / a .

Metrics