Abstract

A method for obtaining broadband multichannel IR spectra with subpicosecond time resolution is described. Spectrally broad IR pulses, produced by difference-frequency mixing of two visible pulses in LiIO3, are split to make signal and reference pulses. After sample absorption, the IR pulses are upconverted by a second LiIO3 crystal to produce visible pulses that are dispersed on a CCD detector to yield transient spectra with 100-cm−1 bandwidth and 4-cm−1 resolution. With this dual-beam technique, spectra with sensitivities of 0.001 ΔOD are obtained.

© 1994 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. J. Heilweil, Opt. Lett. 14, 551 (1989).
    [Crossref] [PubMed]
  2. B. I. Greene, R. M. Hochstrasser, R. B. Weisman, J. Chem. Phys. 70, 1247 (1979).
    [Crossref]
  3. J. H. Glownia, J. A. Misewich, P. P. Sorokin, in Photonics: Nonlinear Optics and Ultrafast Phenomena, R. R. Alfano, L. Rothberg, eds. (Nova Science, New York, 1991), p. 137.
  4. T. M. Jedju, M. W. Roberson, L. Rothberg, Appl. Opt. 31, 2684 (1992).
    [Crossref] [PubMed]
  5. P. A. Anfinrud, C.-H. Han, T. Lian, R. M. Hochstrasser, J. Phys. Chem. 95, 574 (1991).
    [Crossref]
  6. S. P. Church, F.-W. Grevels, H. Hermann, K. Schaffner, Inorg. Chem. 24, 418 (1985).
    [Crossref]

1992 (1)

1991 (1)

P. A. Anfinrud, C.-H. Han, T. Lian, R. M. Hochstrasser, J. Phys. Chem. 95, 574 (1991).
[Crossref]

1989 (1)

1985 (1)

S. P. Church, F.-W. Grevels, H. Hermann, K. Schaffner, Inorg. Chem. 24, 418 (1985).
[Crossref]

1979 (1)

B. I. Greene, R. M. Hochstrasser, R. B. Weisman, J. Chem. Phys. 70, 1247 (1979).
[Crossref]

Anfinrud, P. A.

P. A. Anfinrud, C.-H. Han, T. Lian, R. M. Hochstrasser, J. Phys. Chem. 95, 574 (1991).
[Crossref]

Church, S. P.

S. P. Church, F.-W. Grevels, H. Hermann, K. Schaffner, Inorg. Chem. 24, 418 (1985).
[Crossref]

Glownia, J. H.

J. H. Glownia, J. A. Misewich, P. P. Sorokin, in Photonics: Nonlinear Optics and Ultrafast Phenomena, R. R. Alfano, L. Rothberg, eds. (Nova Science, New York, 1991), p. 137.

Greene, B. I.

B. I. Greene, R. M. Hochstrasser, R. B. Weisman, J. Chem. Phys. 70, 1247 (1979).
[Crossref]

Grevels, F.-W.

S. P. Church, F.-W. Grevels, H. Hermann, K. Schaffner, Inorg. Chem. 24, 418 (1985).
[Crossref]

Han, C.-H.

P. A. Anfinrud, C.-H. Han, T. Lian, R. M. Hochstrasser, J. Phys. Chem. 95, 574 (1991).
[Crossref]

Heilweil, E. J.

Hermann, H.

S. P. Church, F.-W. Grevels, H. Hermann, K. Schaffner, Inorg. Chem. 24, 418 (1985).
[Crossref]

Hochstrasser, R. M.

P. A. Anfinrud, C.-H. Han, T. Lian, R. M. Hochstrasser, J. Phys. Chem. 95, 574 (1991).
[Crossref]

B. I. Greene, R. M. Hochstrasser, R. B. Weisman, J. Chem. Phys. 70, 1247 (1979).
[Crossref]

Jedju, T. M.

Lian, T.

P. A. Anfinrud, C.-H. Han, T. Lian, R. M. Hochstrasser, J. Phys. Chem. 95, 574 (1991).
[Crossref]

Misewich, J. A.

J. H. Glownia, J. A. Misewich, P. P. Sorokin, in Photonics: Nonlinear Optics and Ultrafast Phenomena, R. R. Alfano, L. Rothberg, eds. (Nova Science, New York, 1991), p. 137.

Roberson, M. W.

Rothberg, L.

Schaffner, K.

S. P. Church, F.-W. Grevels, H. Hermann, K. Schaffner, Inorg. Chem. 24, 418 (1985).
[Crossref]

Sorokin, P. P.

J. H. Glownia, J. A. Misewich, P. P. Sorokin, in Photonics: Nonlinear Optics and Ultrafast Phenomena, R. R. Alfano, L. Rothberg, eds. (Nova Science, New York, 1991), p. 137.

Weisman, R. B.

B. I. Greene, R. M. Hochstrasser, R. B. Weisman, J. Chem. Phys. 70, 1247 (1979).
[Crossref]

Appl. Opt. (1)

Inorg. Chem. (1)

S. P. Church, F.-W. Grevels, H. Hermann, K. Schaffner, Inorg. Chem. 24, 418 (1985).
[Crossref]

J. Chem. Phys. (1)

B. I. Greene, R. M. Hochstrasser, R. B. Weisman, J. Chem. Phys. 70, 1247 (1979).
[Crossref]

J. Phys. Chem. (1)

P. A. Anfinrud, C.-H. Han, T. Lian, R. M. Hochstrasser, J. Phys. Chem. 95, 574 (1991).
[Crossref]

Opt. Lett. (1)

Other (1)

J. H. Glownia, J. A. Misewich, P. P. Sorokin, in Photonics: Nonlinear Optics and Ultrafast Phenomena, R. R. Alfano, L. Rothberg, eds. (Nova Science, New York, 1991), p. 137.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic of the dual-beam transient IR system. BS’s, beam splitters/combiners; L’s, lenses; F’s, filters; C’s, LiIO3 crystals; DL’s, optical delay lines; S, sample.

Fig. 2
Fig. 2

(a), (b) Intensity versus wavelength for the signal and reference tracks on two consecutive laser shots (CCD saturation intensity = 65,536 counts). Notice the large differences between shots and the strong correlation between the signal and reference tracks on each shot. (c) The signal/reference ratios for the two laser shots in (a) (solid curve) and (b) (broken curve).

Fig. 3
Fig. 3

Comparison of two-beam (solid curve) and one-beam (dashed curve) data-acquisition methods under conditions in which no features are expected. The two-beam method is approximately 6.5 times less noisy than the one-beam method (standard deviation of 0.0022 versus 0.014 for the two methods).

Fig. 4
Fig. 4

Transient IR spectra of Cr(CO)6 in n-hexane at probe time delays of 2.3, 21.7, and 488.3 ps relative to the pump pulse.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

y = ln ( signal / reference ) pump on ( signal / reference ) pump off .
y = ln ( signal ) pump on ( signal ) pump off ,

Metrics