Abstract

We have built a laser-diode-pumped Nd:YAG laser that emits 5.5 W of power in a single-frequency, polarized, nearly diffraction-limited TEM00 mode. The laser uses fiber-coupled pump lasers and a rectilinear geometry to achieve high efficiency in a simple side-pumped architecture. Injection locking produces a stable, single-frequency output with no intracavity frequency-selection elements.

© 1994 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. G. Blair, ed., The Detection of Gravitational Waves (Cambridge U. Press, Cambridge, 1991), Chap. 3, p. 43.
    [CrossRef]
  2. G. A. Kerr, J. Hough, Appl. Phys. B 49, 491 (1989).
    [CrossRef]
  3. W. Streifer, D. Scifres, G. Harnagel, D. Welch, J. Berger, M. Sakamoto, IEEE J. Quantum Electron. 24, 883 (1988).
    [CrossRef]
  4. J. Berger, D. F. Welch, W. Streifer, D. R. Scifres, N. J. Hoffman, J. J. Smith, D. Radecki, Opt. Lett. 13, 306 (1988).
    [CrossRef] [PubMed]
  5. W. Koechner, Solid-State Laser Engineering, 2nd ed. (Springer-Verlag, New York, 1988), Chap. 7, p. 350.
  6. T. Y. Fan, A. Sanchez, IEEE J. Quantum Electron. 26, 311 (1990).
    [CrossRef]
  7. J. M. Eggelston, T. J. Kane, K. Kuhn, J. Unternahrer, R. L. Byer, IEEE J. Quantum Electron. QE-20, 289 (1984).
    [CrossRef]
  8. D. Findlay, R. A. Clay, Phys. Lett. 20, 277 (1966).
    [CrossRef]
  9. A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986), Chap. 29, p. 1129.
  10. C. D. Nabors, A. D. Farinas, T. Day, S. T. Yang, E. K. Gustafson, R. L. Byer, Opt. Lett. 14, 1189 (1989).
    [CrossRef] [PubMed]
  11. R. W. P. Drever, J. L. Hall, F. V. Kawalski, J. Hough, G. M. Ford, A. J. Munley, H. Ward, Appl. Phys. B 31, 97 (1983).
    [CrossRef]
  12. A. Abramovici, 102-33 Caltech, 391 S. Holliston Street, Pasadena, Calif. 91125 (personal communication, 1993).
  13. T. Day, E. K. Gustafson, R. L. Byer, IEEE J. Quantum Electron. 28, 1106 (1992).
    [CrossRef]

1992 (1)

T. Day, E. K. Gustafson, R. L. Byer, IEEE J. Quantum Electron. 28, 1106 (1992).
[CrossRef]

1990 (1)

T. Y. Fan, A. Sanchez, IEEE J. Quantum Electron. 26, 311 (1990).
[CrossRef]

1989 (2)

1988 (2)

J. Berger, D. F. Welch, W. Streifer, D. R. Scifres, N. J. Hoffman, J. J. Smith, D. Radecki, Opt. Lett. 13, 306 (1988).
[CrossRef] [PubMed]

W. Streifer, D. Scifres, G. Harnagel, D. Welch, J. Berger, M. Sakamoto, IEEE J. Quantum Electron. 24, 883 (1988).
[CrossRef]

1984 (1)

J. M. Eggelston, T. J. Kane, K. Kuhn, J. Unternahrer, R. L. Byer, IEEE J. Quantum Electron. QE-20, 289 (1984).
[CrossRef]

1983 (1)

R. W. P. Drever, J. L. Hall, F. V. Kawalski, J. Hough, G. M. Ford, A. J. Munley, H. Ward, Appl. Phys. B 31, 97 (1983).
[CrossRef]

1966 (1)

D. Findlay, R. A. Clay, Phys. Lett. 20, 277 (1966).
[CrossRef]

Abramovici, A.

A. Abramovici, 102-33 Caltech, 391 S. Holliston Street, Pasadena, Calif. 91125 (personal communication, 1993).

Berger, J.

J. Berger, D. F. Welch, W. Streifer, D. R. Scifres, N. J. Hoffman, J. J. Smith, D. Radecki, Opt. Lett. 13, 306 (1988).
[CrossRef] [PubMed]

W. Streifer, D. Scifres, G. Harnagel, D. Welch, J. Berger, M. Sakamoto, IEEE J. Quantum Electron. 24, 883 (1988).
[CrossRef]

Byer, R. L.

T. Day, E. K. Gustafson, R. L. Byer, IEEE J. Quantum Electron. 28, 1106 (1992).
[CrossRef]

C. D. Nabors, A. D. Farinas, T. Day, S. T. Yang, E. K. Gustafson, R. L. Byer, Opt. Lett. 14, 1189 (1989).
[CrossRef] [PubMed]

J. M. Eggelston, T. J. Kane, K. Kuhn, J. Unternahrer, R. L. Byer, IEEE J. Quantum Electron. QE-20, 289 (1984).
[CrossRef]

Clay, R. A.

D. Findlay, R. A. Clay, Phys. Lett. 20, 277 (1966).
[CrossRef]

Day, T.

Drever, R. W. P.

R. W. P. Drever, J. L. Hall, F. V. Kawalski, J. Hough, G. M. Ford, A. J. Munley, H. Ward, Appl. Phys. B 31, 97 (1983).
[CrossRef]

Eggelston, J. M.

J. M. Eggelston, T. J. Kane, K. Kuhn, J. Unternahrer, R. L. Byer, IEEE J. Quantum Electron. QE-20, 289 (1984).
[CrossRef]

Fan, T. Y.

T. Y. Fan, A. Sanchez, IEEE J. Quantum Electron. 26, 311 (1990).
[CrossRef]

Farinas, A. D.

Findlay, D.

D. Findlay, R. A. Clay, Phys. Lett. 20, 277 (1966).
[CrossRef]

Ford, G. M.

R. W. P. Drever, J. L. Hall, F. V. Kawalski, J. Hough, G. M. Ford, A. J. Munley, H. Ward, Appl. Phys. B 31, 97 (1983).
[CrossRef]

Gustafson, E. K.

Hall, J. L.

R. W. P. Drever, J. L. Hall, F. V. Kawalski, J. Hough, G. M. Ford, A. J. Munley, H. Ward, Appl. Phys. B 31, 97 (1983).
[CrossRef]

Harnagel, G.

W. Streifer, D. Scifres, G. Harnagel, D. Welch, J. Berger, M. Sakamoto, IEEE J. Quantum Electron. 24, 883 (1988).
[CrossRef]

Hoffman, N. J.

Hough, J.

G. A. Kerr, J. Hough, Appl. Phys. B 49, 491 (1989).
[CrossRef]

R. W. P. Drever, J. L. Hall, F. V. Kawalski, J. Hough, G. M. Ford, A. J. Munley, H. Ward, Appl. Phys. B 31, 97 (1983).
[CrossRef]

Kane, T. J.

J. M. Eggelston, T. J. Kane, K. Kuhn, J. Unternahrer, R. L. Byer, IEEE J. Quantum Electron. QE-20, 289 (1984).
[CrossRef]

Kawalski, F. V.

R. W. P. Drever, J. L. Hall, F. V. Kawalski, J. Hough, G. M. Ford, A. J. Munley, H. Ward, Appl. Phys. B 31, 97 (1983).
[CrossRef]

Kerr, G. A.

G. A. Kerr, J. Hough, Appl. Phys. B 49, 491 (1989).
[CrossRef]

Koechner, W.

W. Koechner, Solid-State Laser Engineering, 2nd ed. (Springer-Verlag, New York, 1988), Chap. 7, p. 350.

Kuhn, K.

J. M. Eggelston, T. J. Kane, K. Kuhn, J. Unternahrer, R. L. Byer, IEEE J. Quantum Electron. QE-20, 289 (1984).
[CrossRef]

Munley, A. J.

R. W. P. Drever, J. L. Hall, F. V. Kawalski, J. Hough, G. M. Ford, A. J. Munley, H. Ward, Appl. Phys. B 31, 97 (1983).
[CrossRef]

Nabors, C. D.

Radecki, D.

Sakamoto, M.

W. Streifer, D. Scifres, G. Harnagel, D. Welch, J. Berger, M. Sakamoto, IEEE J. Quantum Electron. 24, 883 (1988).
[CrossRef]

Sanchez, A.

T. Y. Fan, A. Sanchez, IEEE J. Quantum Electron. 26, 311 (1990).
[CrossRef]

Scifres, D.

W. Streifer, D. Scifres, G. Harnagel, D. Welch, J. Berger, M. Sakamoto, IEEE J. Quantum Electron. 24, 883 (1988).
[CrossRef]

Scifres, D. R.

Siegman, A. E.

A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986), Chap. 29, p. 1129.

Smith, J. J.

Streifer, W.

J. Berger, D. F. Welch, W. Streifer, D. R. Scifres, N. J. Hoffman, J. J. Smith, D. Radecki, Opt. Lett. 13, 306 (1988).
[CrossRef] [PubMed]

W. Streifer, D. Scifres, G. Harnagel, D. Welch, J. Berger, M. Sakamoto, IEEE J. Quantum Electron. 24, 883 (1988).
[CrossRef]

Unternahrer, J.

J. M. Eggelston, T. J. Kane, K. Kuhn, J. Unternahrer, R. L. Byer, IEEE J. Quantum Electron. QE-20, 289 (1984).
[CrossRef]

Ward, H.

R. W. P. Drever, J. L. Hall, F. V. Kawalski, J. Hough, G. M. Ford, A. J. Munley, H. Ward, Appl. Phys. B 31, 97 (1983).
[CrossRef]

Welch, D.

W. Streifer, D. Scifres, G. Harnagel, D. Welch, J. Berger, M. Sakamoto, IEEE J. Quantum Electron. 24, 883 (1988).
[CrossRef]

Welch, D. F.

Yang, S. T.

Appl. Phys. B (2)

G. A. Kerr, J. Hough, Appl. Phys. B 49, 491 (1989).
[CrossRef]

R. W. P. Drever, J. L. Hall, F. V. Kawalski, J. Hough, G. M. Ford, A. J. Munley, H. Ward, Appl. Phys. B 31, 97 (1983).
[CrossRef]

IEEE J. Quantum Electron. (4)

W. Streifer, D. Scifres, G. Harnagel, D. Welch, J. Berger, M. Sakamoto, IEEE J. Quantum Electron. 24, 883 (1988).
[CrossRef]

T. Y. Fan, A. Sanchez, IEEE J. Quantum Electron. 26, 311 (1990).
[CrossRef]

J. M. Eggelston, T. J. Kane, K. Kuhn, J. Unternahrer, R. L. Byer, IEEE J. Quantum Electron. QE-20, 289 (1984).
[CrossRef]

T. Day, E. K. Gustafson, R. L. Byer, IEEE J. Quantum Electron. 28, 1106 (1992).
[CrossRef]

Opt. Lett. (2)

Phys. Lett. (1)

D. Findlay, R. A. Clay, Phys. Lett. 20, 277 (1966).
[CrossRef]

Other (4)

A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986), Chap. 29, p. 1129.

W. Koechner, Solid-State Laser Engineering, 2nd ed. (Springer-Verlag, New York, 1988), Chap. 7, p. 350.

A. Abramovici, 102-33 Caltech, 391 S. Holliston Street, Pasadena, Calif. 91125 (personal communication, 1993).

D. G. Blair, ed., The Detection of Gravitational Waves (Cambridge U. Press, Cambridge, 1991), Chap. 3, p. 43.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic of the laser-diode-pumped Nd:YAG laser head. The laser is pumped from above by 56 300-μm core-diameter optical fibers. A gold-coated mirror is used to double pass the pump light. Heat is removed through a thin indium sheet in physical contact with the nonoptical side faces.

Fig. 2
Fig. 2

Input–output plot for the standing-wave laser. Each point represents the addition of the pump power of a single laser diode. The maximum TEM00 output power is 8.0 W. The linear fit corresponds to a threshold power of 8.3 W and a slope efficiency of 19%. Also plotted is the output power of the injection-locked ring laser.

Fig. 3
Fig. 3

Schematic of the injection-locking experiment. A loop filter (not shown) uses the Pound–Drever–Hall error signal to generate the control signal that drives the ring cavity PZT-mounted mirror. This feedback loop keeps the diode-pumped laser cavity locked to the single-frequency laser. LPF, low-pass filter.

Fig. 4
Fig. 4

Output power of the injection-locked ring laser. Two diodes are switched off, then one is switched back on to demonstrate the reliability of the design. The laser remains locked during the experiment.

Tables (1)

Tables Icon

Table 1 Summary of Laser Amplitude and Frequency Noise

Metrics