Abstract

Subwavelength variation in the length of an external cavity strongly coupled to a very short (100 μm) dye laser results in large changes in the total intensity and frequency hopping of the lasing modes. These measurements are in agreement with a multimode theory of coupled-cavity laser dynamics. The modulation in the total intensity is due to the frequency-dependent gain associated with the coupled-cavity mode structure, while the mode hopping characteristics can be attributed to frequency-dependent losses caused by very weak (~10−3) reflections or diffuse scattering from the glass surfaces in the system.

© 1994 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. E. Wieman, L. Hollberg, Rev. Sci. Instrum. 62, 1 (1991).
    [CrossRef]
  2. R. W. Tkach, A. R. Chaplyry, J. Lightwave Technol. 4, 1655 (1986).
    [CrossRef]
  3. R. Lang, K. Kobayashi, IEEE J. Quantum Electron. QE-16, 347 (1980).
    [CrossRef]
  4. D. Marcuse, T. Lee, IEEE J. Quantum Electron. QE-20, 166 (1984).
    [CrossRef]
  5. T. Lee, C. Burrus, J. Copeland, A. Dental, D. Marcuse, IEEE J. Quantum Electron. QE-18, 1101 (1982).
  6. H. K. Choi, K. Chen, S. Wang, IEEE J. Quantum Electron. QE-20, 385 (1984).
    [CrossRef]
  7. P. J. De Groot, J. Mod. Opt. 37, 1199 (1990).
    [CrossRef]
  8. M. Rose, M. Lindsey, W. Chow, S. Koch, M. Sargent, Phys. Rev. A 46, 603 (1992).
    [CrossRef] [PubMed]
  9. For a complete description of the laser and the turn-on transient statistics, see S. E. Hodges, M. Munroe, D. Adkison, W. Gadomski, M. G. Raymer, Opt. Lett. 17, 931 (1992).
    [CrossRef] [PubMed]
  10. K. Shimoda, Introduction to Laser Physics (Springer-Verlag, New York, 1986), Chap. 9, pp. 178–182.
  11. S. E. Hodges, Ph.D. dissertation (University of Oregon, Eugene, Ore., 1993).
  12. S. E. Hodges, M. Munroe, J. Cooper, M. G. Raymer, Opt. Lett. 18, 1481 (1993).
    [CrossRef] [PubMed]
  13. G. P. Agrawal, N. K. Dutta, Long-Wavelength Semiconductor Lasers (Van Nostrand Reinhold, New York, 1986), pp. 338–346.

1993 (1)

1992 (2)

1991 (1)

C. E. Wieman, L. Hollberg, Rev. Sci. Instrum. 62, 1 (1991).
[CrossRef]

1990 (1)

P. J. De Groot, J. Mod. Opt. 37, 1199 (1990).
[CrossRef]

1986 (1)

R. W. Tkach, A. R. Chaplyry, J. Lightwave Technol. 4, 1655 (1986).
[CrossRef]

1984 (2)

D. Marcuse, T. Lee, IEEE J. Quantum Electron. QE-20, 166 (1984).
[CrossRef]

H. K. Choi, K. Chen, S. Wang, IEEE J. Quantum Electron. QE-20, 385 (1984).
[CrossRef]

1982 (1)

T. Lee, C. Burrus, J. Copeland, A. Dental, D. Marcuse, IEEE J. Quantum Electron. QE-18, 1101 (1982).

1980 (1)

R. Lang, K. Kobayashi, IEEE J. Quantum Electron. QE-16, 347 (1980).
[CrossRef]

Adkison, D.

Agrawal, G. P.

G. P. Agrawal, N. K. Dutta, Long-Wavelength Semiconductor Lasers (Van Nostrand Reinhold, New York, 1986), pp. 338–346.

Burrus, C.

T. Lee, C. Burrus, J. Copeland, A. Dental, D. Marcuse, IEEE J. Quantum Electron. QE-18, 1101 (1982).

Chaplyry, A. R.

R. W. Tkach, A. R. Chaplyry, J. Lightwave Technol. 4, 1655 (1986).
[CrossRef]

Chen, K.

H. K. Choi, K. Chen, S. Wang, IEEE J. Quantum Electron. QE-20, 385 (1984).
[CrossRef]

Choi, H. K.

H. K. Choi, K. Chen, S. Wang, IEEE J. Quantum Electron. QE-20, 385 (1984).
[CrossRef]

Chow, W.

M. Rose, M. Lindsey, W. Chow, S. Koch, M. Sargent, Phys. Rev. A 46, 603 (1992).
[CrossRef] [PubMed]

Cooper, J.

Copeland, J.

T. Lee, C. Burrus, J. Copeland, A. Dental, D. Marcuse, IEEE J. Quantum Electron. QE-18, 1101 (1982).

De Groot, P. J.

P. J. De Groot, J. Mod. Opt. 37, 1199 (1990).
[CrossRef]

Dental, A.

T. Lee, C. Burrus, J. Copeland, A. Dental, D. Marcuse, IEEE J. Quantum Electron. QE-18, 1101 (1982).

Dutta, N. K.

G. P. Agrawal, N. K. Dutta, Long-Wavelength Semiconductor Lasers (Van Nostrand Reinhold, New York, 1986), pp. 338–346.

Gadomski, W.

Hodges, S. E.

Hollberg, L.

C. E. Wieman, L. Hollberg, Rev. Sci. Instrum. 62, 1 (1991).
[CrossRef]

Kobayashi, K.

R. Lang, K. Kobayashi, IEEE J. Quantum Electron. QE-16, 347 (1980).
[CrossRef]

Koch, S.

M. Rose, M. Lindsey, W. Chow, S. Koch, M. Sargent, Phys. Rev. A 46, 603 (1992).
[CrossRef] [PubMed]

Lang, R.

R. Lang, K. Kobayashi, IEEE J. Quantum Electron. QE-16, 347 (1980).
[CrossRef]

Lee, T.

D. Marcuse, T. Lee, IEEE J. Quantum Electron. QE-20, 166 (1984).
[CrossRef]

T. Lee, C. Burrus, J. Copeland, A. Dental, D. Marcuse, IEEE J. Quantum Electron. QE-18, 1101 (1982).

Lindsey, M.

M. Rose, M. Lindsey, W. Chow, S. Koch, M. Sargent, Phys. Rev. A 46, 603 (1992).
[CrossRef] [PubMed]

Marcuse, D.

D. Marcuse, T. Lee, IEEE J. Quantum Electron. QE-20, 166 (1984).
[CrossRef]

T. Lee, C. Burrus, J. Copeland, A. Dental, D. Marcuse, IEEE J. Quantum Electron. QE-18, 1101 (1982).

Munroe, M.

Raymer, M. G.

Rose, M.

M. Rose, M. Lindsey, W. Chow, S. Koch, M. Sargent, Phys. Rev. A 46, 603 (1992).
[CrossRef] [PubMed]

Sargent, M.

M. Rose, M. Lindsey, W. Chow, S. Koch, M. Sargent, Phys. Rev. A 46, 603 (1992).
[CrossRef] [PubMed]

Shimoda, K.

K. Shimoda, Introduction to Laser Physics (Springer-Verlag, New York, 1986), Chap. 9, pp. 178–182.

Tkach, R. W.

R. W. Tkach, A. R. Chaplyry, J. Lightwave Technol. 4, 1655 (1986).
[CrossRef]

Wang, S.

H. K. Choi, K. Chen, S. Wang, IEEE J. Quantum Electron. QE-20, 385 (1984).
[CrossRef]

Wieman, C. E.

C. E. Wieman, L. Hollberg, Rev. Sci. Instrum. 62, 1 (1991).
[CrossRef]

IEEE J. Quantum Electron. (4)

R. Lang, K. Kobayashi, IEEE J. Quantum Electron. QE-16, 347 (1980).
[CrossRef]

D. Marcuse, T. Lee, IEEE J. Quantum Electron. QE-20, 166 (1984).
[CrossRef]

T. Lee, C. Burrus, J. Copeland, A. Dental, D. Marcuse, IEEE J. Quantum Electron. QE-18, 1101 (1982).

H. K. Choi, K. Chen, S. Wang, IEEE J. Quantum Electron. QE-20, 385 (1984).
[CrossRef]

J. Lightwave Technol. (1)

R. W. Tkach, A. R. Chaplyry, J. Lightwave Technol. 4, 1655 (1986).
[CrossRef]

J. Mod. Opt. (1)

P. J. De Groot, J. Mod. Opt. 37, 1199 (1990).
[CrossRef]

Opt. Lett. (2)

Phys. Rev. A (1)

M. Rose, M. Lindsey, W. Chow, S. Koch, M. Sargent, Phys. Rev. A 46, 603 (1992).
[CrossRef] [PubMed]

Rev. Sci. Instrum. (1)

C. E. Wieman, L. Hollberg, Rev. Sci. Instrum. 62, 1 (1991).
[CrossRef]

Other (3)

K. Shimoda, Introduction to Laser Physics (Springer-Verlag, New York, 1986), Chap. 9, pp. 178–182.

S. E. Hodges, Ph.D. dissertation (University of Oregon, Eugene, Ore., 1993).

G. P. Agrawal, N. K. Dutta, Long-Wavelength Semiconductor Lasers (Van Nostrand Reinhold, New York, 1986), pp. 338–346.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Experimental setup for measuring the total intensity and spectrum from a coupled-cavity laser (in the box).

Fig. 2
Fig. 2

Experimentally observed variation of (a) the total intensity and (b) the lasing frequency as a result of changes in the external-cavity length.

Fig. 3
Fig. 3

Theoretically calculated variation of (a) the total intensity and (b) the lasing frequency as a result of changes in the external-cavity length.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

u q ( z ) = { A q sin [ k q n ( z + L A ) ] L A z 0 B q sin [ k q ( z L B ) ] 0 z L B ,
A q 2 2 L B [ F + 1 / n 1 + F sin 2 ( k q nL A ) ] ,
B q 2 2 L B { 1 nL A L B [ F + 1 1 + F sin 2 ( k q nL A ) ] } ,
W q ( t ) n 2 L A 0 | u q ( z ) | 2 W ( z , t ) d z .
d I q ( t ) d t = [ l q W q ( t ) κ q ] I q ( t ) ,
d W q ( t ) d t = γ | | [ R q W q ( t ) ] 1 8 π ω q ћ m α qm l m I m ( t ) W m ( t ) ,
α q , m = n 2 L A 0 | u q ( z ) | 2 | u m ( z ) | 2 d z .

Metrics