Abstract

An all-solid-state laser system continuously tunable from 198 to 300 nm is developed for the first time to our knowledge. This tunable UV laser system consists of a Ti:sapphire laser, a Nd:YAG laser, and the nonlinear mixing enclosures and has relatively high average output of more than 8 mW and a narrow bandwidth of the order of 0.1 nm over the entire range. Typical characteristics of this laser are presented.

© 1994 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Bäuerle, in Chemical Processing with Lasers, Vol. 1 of Springer Series in Materials Science (Springer-Verlag, Berlin, 1986).
  2. W. Mückenheim, P. Lokai, B. Burghardt, D. Basting, Appl. Phys. B 45, 259 (1988).
    [CrossRef]
  3. U. Heitmann, M. Kötteritzsch, S. Heitz, A. Hese, Appl. Phys. B 55, 419 (1992).
    [CrossRef]
  4. H. F. Döbele, M. Möri, M. Röwekamp, Appl. Phys. B 42, 67 (1987).
    [CrossRef]
  5. V. Wilke, W. Schmidt, Appl. Phys. 16, 151 (1978).
    [CrossRef]
  6. V. Wilke, W. Schmidt, Appl. Phys. 18, 177 (1979).
    [CrossRef]
  7. H. Schomburg, H. F. Döbele, B. Rückle, Appl. Phys. B 30, 131 (1983).
    [CrossRef]
  8. R. Hilbig, R. Wallenstein, Appl. Opt. 21, 913 (1982).
    [CrossRef] [PubMed]
  9. R. Hilbig, R. Wallenstein, IEEE J. Quantum Electron. QE-17, 1566 (1981).
    [CrossRef]

1992 (1)

U. Heitmann, M. Kötteritzsch, S. Heitz, A. Hese, Appl. Phys. B 55, 419 (1992).
[CrossRef]

1988 (1)

W. Mückenheim, P. Lokai, B. Burghardt, D. Basting, Appl. Phys. B 45, 259 (1988).
[CrossRef]

1987 (1)

H. F. Döbele, M. Möri, M. Röwekamp, Appl. Phys. B 42, 67 (1987).
[CrossRef]

1983 (1)

H. Schomburg, H. F. Döbele, B. Rückle, Appl. Phys. B 30, 131 (1983).
[CrossRef]

1982 (1)

1981 (1)

R. Hilbig, R. Wallenstein, IEEE J. Quantum Electron. QE-17, 1566 (1981).
[CrossRef]

1979 (1)

V. Wilke, W. Schmidt, Appl. Phys. 18, 177 (1979).
[CrossRef]

1978 (1)

V. Wilke, W. Schmidt, Appl. Phys. 16, 151 (1978).
[CrossRef]

Basting, D.

W. Mückenheim, P. Lokai, B. Burghardt, D. Basting, Appl. Phys. B 45, 259 (1988).
[CrossRef]

Bäuerle, D.

D. Bäuerle, in Chemical Processing with Lasers, Vol. 1 of Springer Series in Materials Science (Springer-Verlag, Berlin, 1986).

Burghardt, B.

W. Mückenheim, P. Lokai, B. Burghardt, D. Basting, Appl. Phys. B 45, 259 (1988).
[CrossRef]

Döbele, H. F.

H. F. Döbele, M. Möri, M. Röwekamp, Appl. Phys. B 42, 67 (1987).
[CrossRef]

H. Schomburg, H. F. Döbele, B. Rückle, Appl. Phys. B 30, 131 (1983).
[CrossRef]

Heitmann, U.

U. Heitmann, M. Kötteritzsch, S. Heitz, A. Hese, Appl. Phys. B 55, 419 (1992).
[CrossRef]

Heitz, S.

U. Heitmann, M. Kötteritzsch, S. Heitz, A. Hese, Appl. Phys. B 55, 419 (1992).
[CrossRef]

Hese, A.

U. Heitmann, M. Kötteritzsch, S. Heitz, A. Hese, Appl. Phys. B 55, 419 (1992).
[CrossRef]

Hilbig, R.

R. Hilbig, R. Wallenstein, Appl. Opt. 21, 913 (1982).
[CrossRef] [PubMed]

R. Hilbig, R. Wallenstein, IEEE J. Quantum Electron. QE-17, 1566 (1981).
[CrossRef]

Kötteritzsch, M.

U. Heitmann, M. Kötteritzsch, S. Heitz, A. Hese, Appl. Phys. B 55, 419 (1992).
[CrossRef]

Lokai, P.

W. Mückenheim, P. Lokai, B. Burghardt, D. Basting, Appl. Phys. B 45, 259 (1988).
[CrossRef]

Möri, M.

H. F. Döbele, M. Möri, M. Röwekamp, Appl. Phys. B 42, 67 (1987).
[CrossRef]

Mückenheim, W.

W. Mückenheim, P. Lokai, B. Burghardt, D. Basting, Appl. Phys. B 45, 259 (1988).
[CrossRef]

Röwekamp, M.

H. F. Döbele, M. Möri, M. Röwekamp, Appl. Phys. B 42, 67 (1987).
[CrossRef]

Rückle, B.

H. Schomburg, H. F. Döbele, B. Rückle, Appl. Phys. B 30, 131 (1983).
[CrossRef]

Schmidt, W.

V. Wilke, W. Schmidt, Appl. Phys. 18, 177 (1979).
[CrossRef]

V. Wilke, W. Schmidt, Appl. Phys. 16, 151 (1978).
[CrossRef]

Schomburg, H.

H. Schomburg, H. F. Döbele, B. Rückle, Appl. Phys. B 30, 131 (1983).
[CrossRef]

Wallenstein, R.

R. Hilbig, R. Wallenstein, Appl. Opt. 21, 913 (1982).
[CrossRef] [PubMed]

R. Hilbig, R. Wallenstein, IEEE J. Quantum Electron. QE-17, 1566 (1981).
[CrossRef]

Wilke, V.

V. Wilke, W. Schmidt, Appl. Phys. 18, 177 (1979).
[CrossRef]

V. Wilke, W. Schmidt, Appl. Phys. 16, 151 (1978).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. (2)

V. Wilke, W. Schmidt, Appl. Phys. 16, 151 (1978).
[CrossRef]

V. Wilke, W. Schmidt, Appl. Phys. 18, 177 (1979).
[CrossRef]

Appl. Phys. B (4)

H. Schomburg, H. F. Döbele, B. Rückle, Appl. Phys. B 30, 131 (1983).
[CrossRef]

W. Mückenheim, P. Lokai, B. Burghardt, D. Basting, Appl. Phys. B 45, 259 (1988).
[CrossRef]

U. Heitmann, M. Kötteritzsch, S. Heitz, A. Hese, Appl. Phys. B 55, 419 (1992).
[CrossRef]

H. F. Döbele, M. Möri, M. Röwekamp, Appl. Phys. B 42, 67 (1987).
[CrossRef]

IEEE J. Quantum Electron. (1)

R. Hilbig, R. Wallenstein, IEEE J. Quantum Electron. QE-17, 1566 (1981).
[CrossRef]

Other (1)

D. Bäuerle, in Chemical Processing with Lasers, Vol. 1 of Springer Series in Materials Science (Springer-Verlag, Berlin, 1986).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Schematic of the solid-state laser-based UV laser continuously tunable from 198 to 300 nm. L’s, lenses; M’s, mirrors; P’s, polarizers; GRM, graded-reflectivity mirror; BBO, beta-barium metaborate; OMA’s, optical multichannel analyzers; B.S.’s, beam splitters.

Fig. 2
Fig. 2

Actual average output power of the laser at a 10-Hz repetition rate. SFG, THG, SHG, and fundamental outputs are shown. Each horizontal axis is aligned to the corresponding value of the converted wavelength from the fundamental.

Fig. 3
Fig. 3

Typical beam-profile patterns of the output at 198 nm. Upper panels show digitized images of a near-field (1.7-m) and a far-field (7.7-m) pattern, and the lower panels show cross-sectional beam profiles. The solid and the dashed curves show actual beam profiles and corresponding ideal Gaussian curves, respectively.

Metrics