Abstract

The propagation of high-peak-power (>10-kW) sub-100-fs pulses near the zero-dispersion wavelength of an optical fiber was studied experimentally. Four-photon mixing and stimulated Raman scattering were observed for fiber lengths greater than 2 m. With pulses as short as 25 fs, four-photon mixing dominates, resulting in efficient conversion of the input pulse spectrum into two coherent spectral bands. This can be used to extend the useful wavelength range of femtosecond lasers in the infrared.

© 1994 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Propagation of short pulses with fluctuating peak power in the zero-dispersion wavelength region of single-mode fibers

O. Noylender, D. Abraham, and G. Eisenstein
J. Opt. Soc. Am. B 14(11) 2904-2909 (1997)

High-energy, sub-100 fs, all-fiber stretched-pulse mode-locked Er-doped ring laser with a highly-nonlinear resonator

Dmitriy A. Dvoretskiy, Vladimir A. Lazarev, Vasiliy S. Voropaev, Zhanna N. Rodnova, Stanislav G. Sazonkin, Stanislav O. Leonov, Alexey B. Pnev, Valeriy E. Karasik, and Alexander A. Krylov
Opt. Express 23(26) 33295-33300 (2015)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription