Abstract

A tunable 1-kHz repetition-rate regenerative Ti:sapphire amplifier system is used to produce 200-fs vacuum-ultraviolet pulses in the range of 172.7–187 nm by phase-matched sum-frequency mixing in lithium triborate of the Ti:sapphire’s fourth harmonic and a parametrically generated infrared pulse.

© 1994 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. R. Vidal, in Tunable Lasers, L. F. Mollenauer, J. C. White, eds., Vol. 59 of Topics in Applied Physics (Springer-Verlag, Berlin, 1987), pp. 57–113.
    [CrossRef]
  2. J. H. Glownia, M. Kaschke, P. P. Sorokin, Opt. Lett. 17, 337 (1992).
    [CrossRef] [PubMed]
  3. J. H. Glownia, D. R. Gnass, M. Kaschke, P. P. Sorokin, Proc. Soc. Photo-Opt. Instrum. Eng. 1861, 176 (1993).
  4. A. Tünnermann, K. Mossavi, B. Wellegehausen, Phys. Rev. A 46, 2707 (1992).
    [CrossRef] [PubMed]
  5. J. Ringling, O. Kittelmann, F. Noack, G. Korn, J. Squier, Opt. Lett. 18, 2035 (1993).
    [CrossRef] [PubMed]
  6. A. Borsutzky, R. Brünger, R. Wallenstein, Appl. Phys. B 52, 380 (1991).
    [CrossRef]
  7. B. Wu, F. Xie, C. Chen, D. Deng, Z. Xu, Opt. Commun. 88, 451 (1992).
    [CrossRef]
  8. R. E. Stickel, F. B. Dunning, Appl. Opt. 17, 981 (1978).
    [CrossRef] [PubMed]
  9. V. Petrov, F. Seifert, F. Noack, Appl. Phys. Lett. 65, 268 (1994).
    [CrossRef]
  10. S. P. Velsko, M. Webb, L. Davis, C. Huang, IEEE J. Quantum Electron. 27, 2182 (1991).
    [CrossRef]

1994 (1)

V. Petrov, F. Seifert, F. Noack, Appl. Phys. Lett. 65, 268 (1994).
[CrossRef]

1993 (2)

J. H. Glownia, D. R. Gnass, M. Kaschke, P. P. Sorokin, Proc. Soc. Photo-Opt. Instrum. Eng. 1861, 176 (1993).

J. Ringling, O. Kittelmann, F. Noack, G. Korn, J. Squier, Opt. Lett. 18, 2035 (1993).
[CrossRef] [PubMed]

1992 (3)

A. Tünnermann, K. Mossavi, B. Wellegehausen, Phys. Rev. A 46, 2707 (1992).
[CrossRef] [PubMed]

B. Wu, F. Xie, C. Chen, D. Deng, Z. Xu, Opt. Commun. 88, 451 (1992).
[CrossRef]

J. H. Glownia, M. Kaschke, P. P. Sorokin, Opt. Lett. 17, 337 (1992).
[CrossRef] [PubMed]

1991 (2)

S. P. Velsko, M. Webb, L. Davis, C. Huang, IEEE J. Quantum Electron. 27, 2182 (1991).
[CrossRef]

A. Borsutzky, R. Brünger, R. Wallenstein, Appl. Phys. B 52, 380 (1991).
[CrossRef]

1978 (1)

Borsutzky, A.

A. Borsutzky, R. Brünger, R. Wallenstein, Appl. Phys. B 52, 380 (1991).
[CrossRef]

Brünger, R.

A. Borsutzky, R. Brünger, R. Wallenstein, Appl. Phys. B 52, 380 (1991).
[CrossRef]

Chen, C.

B. Wu, F. Xie, C. Chen, D. Deng, Z. Xu, Opt. Commun. 88, 451 (1992).
[CrossRef]

Davis, L.

S. P. Velsko, M. Webb, L. Davis, C. Huang, IEEE J. Quantum Electron. 27, 2182 (1991).
[CrossRef]

Deng, D.

B. Wu, F. Xie, C. Chen, D. Deng, Z. Xu, Opt. Commun. 88, 451 (1992).
[CrossRef]

Dunning, F. B.

Glownia, J. H.

J. H. Glownia, D. R. Gnass, M. Kaschke, P. P. Sorokin, Proc. Soc. Photo-Opt. Instrum. Eng. 1861, 176 (1993).

J. H. Glownia, M. Kaschke, P. P. Sorokin, Opt. Lett. 17, 337 (1992).
[CrossRef] [PubMed]

Gnass, D. R.

J. H. Glownia, D. R. Gnass, M. Kaschke, P. P. Sorokin, Proc. Soc. Photo-Opt. Instrum. Eng. 1861, 176 (1993).

Huang, C.

S. P. Velsko, M. Webb, L. Davis, C. Huang, IEEE J. Quantum Electron. 27, 2182 (1991).
[CrossRef]

Kaschke, M.

J. H. Glownia, D. R. Gnass, M. Kaschke, P. P. Sorokin, Proc. Soc. Photo-Opt. Instrum. Eng. 1861, 176 (1993).

J. H. Glownia, M. Kaschke, P. P. Sorokin, Opt. Lett. 17, 337 (1992).
[CrossRef] [PubMed]

Kittelmann, O.

Korn, G.

Mossavi, K.

A. Tünnermann, K. Mossavi, B. Wellegehausen, Phys. Rev. A 46, 2707 (1992).
[CrossRef] [PubMed]

Noack, F.

Petrov, V.

V. Petrov, F. Seifert, F. Noack, Appl. Phys. Lett. 65, 268 (1994).
[CrossRef]

Ringling, J.

Seifert, F.

V. Petrov, F. Seifert, F. Noack, Appl. Phys. Lett. 65, 268 (1994).
[CrossRef]

Sorokin, P. P.

J. H. Glownia, D. R. Gnass, M. Kaschke, P. P. Sorokin, Proc. Soc. Photo-Opt. Instrum. Eng. 1861, 176 (1993).

J. H. Glownia, M. Kaschke, P. P. Sorokin, Opt. Lett. 17, 337 (1992).
[CrossRef] [PubMed]

Squier, J.

Stickel, R. E.

Tünnermann, A.

A. Tünnermann, K. Mossavi, B. Wellegehausen, Phys. Rev. A 46, 2707 (1992).
[CrossRef] [PubMed]

Velsko, S. P.

S. P. Velsko, M. Webb, L. Davis, C. Huang, IEEE J. Quantum Electron. 27, 2182 (1991).
[CrossRef]

Vidal, C. R.

C. R. Vidal, in Tunable Lasers, L. F. Mollenauer, J. C. White, eds., Vol. 59 of Topics in Applied Physics (Springer-Verlag, Berlin, 1987), pp. 57–113.
[CrossRef]

Wallenstein, R.

A. Borsutzky, R. Brünger, R. Wallenstein, Appl. Phys. B 52, 380 (1991).
[CrossRef]

Webb, M.

S. P. Velsko, M. Webb, L. Davis, C. Huang, IEEE J. Quantum Electron. 27, 2182 (1991).
[CrossRef]

Wellegehausen, B.

A. Tünnermann, K. Mossavi, B. Wellegehausen, Phys. Rev. A 46, 2707 (1992).
[CrossRef] [PubMed]

Wu, B.

B. Wu, F. Xie, C. Chen, D. Deng, Z. Xu, Opt. Commun. 88, 451 (1992).
[CrossRef]

Xie, F.

B. Wu, F. Xie, C. Chen, D. Deng, Z. Xu, Opt. Commun. 88, 451 (1992).
[CrossRef]

Xu, Z.

B. Wu, F. Xie, C. Chen, D. Deng, Z. Xu, Opt. Commun. 88, 451 (1992).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. B (1)

A. Borsutzky, R. Brünger, R. Wallenstein, Appl. Phys. B 52, 380 (1991).
[CrossRef]

Appl. Phys. Lett. (1)

V. Petrov, F. Seifert, F. Noack, Appl. Phys. Lett. 65, 268 (1994).
[CrossRef]

IEEE J. Quantum Electron. (1)

S. P. Velsko, M. Webb, L. Davis, C. Huang, IEEE J. Quantum Electron. 27, 2182 (1991).
[CrossRef]

Opt. Commun. (1)

B. Wu, F. Xie, C. Chen, D. Deng, Z. Xu, Opt. Commun. 88, 451 (1992).
[CrossRef]

Opt. Lett. (2)

Phys. Rev. A (1)

A. Tünnermann, K. Mossavi, B. Wellegehausen, Phys. Rev. A 46, 2707 (1992).
[CrossRef] [PubMed]

Proc. Soc. Photo-Opt. Instrum. Eng. (1)

J. H. Glownia, D. R. Gnass, M. Kaschke, P. P. Sorokin, Proc. Soc. Photo-Opt. Instrum. Eng. 1861, 176 (1993).

Other (1)

C. R. Vidal, in Tunable Lasers, L. F. Mollenauer, J. C. White, eds., Vol. 59 of Topics in Applied Physics (Springer-Verlag, Berlin, 1987), pp. 57–113.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Experimental setup: BS’s, beam splitters; DM’s, dichroic mirrors; OMA, optical multichannel analyzer; SHG, THG, and FHG, second-, third-, and fourth-harmonic generation, respectively; LBO I, LBO II and BBO I, BBO II, type I and type II phase-matching crystals. SHG BBO I: 0.7 mm thick, θ = 30°; THG BBO II: 0.3 mm thick, θ = 58°; FHG BBO I: 0.1 mm thick, θ = 72°.

Fig. 2
Fig. 2

Phase-matching angle in LBO versus sum-frequency wavelength. Phase-matched generation of VUV radiation below 180 nm is possible for an IR wavelength greater than 1.7 μm.

Fig. 3
Fig. 3

Measured (squares) and calculated (solid curves) VUV wavelength as a function of the fundamental Ti:sapphire laser wavelength and the temperature T of the seeder crystal. The upper curve is the theoretical limit for a 200°C LBO seeder temperature. The lower curve is the theoretical limit for a 25°C LBO seeder temperature and a ϕ = 90° phase-matching angle in the sum-frequency crystal.

Fig. 4
Fig. 4

(a) Numerical simulation of the sum-frequency generation of a 180-nm VUV pulse in a 1-mm-long LBO crystal at low (a few percent) conversion efficiency. The VUV signal pulse energy (solid curve) and the VUV pulse length (FWHM, dotted curve) are shown as a function of the delay between the UV and the IR pulses at the crystal entrance. (b) Measured VUV signal at 180 nm as a function of the delay between the interacting fourth-harmonic and IR pulses. The rise time of the cross-correlation function (CCF) of ≈200 fs is well fitted by a correlation of a 170-fs UV pulse and an 80-fs IR pulse.

Metrics