Abstract

Polarization decorrelation in single-mode fibers with randomly varying birefringence is studied. We find that decorrelation length is minimized for a given beat length if the average autocorrelation length of the birefringence is close to the average beat length. The differential time delay between the polarization modes is found to depend on the autocorrelation length of the birefringence rather than on the decorrelation length of the polarization modes.

© 1994 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. D. Poole, Opt. Lett. 13, 687 (1988).
    [Crossref] [PubMed]
  2. P. K. A. Wai, C. R. Menyuk, H. H. Chen, Opt. Lett. 16, 687 (1991).
    [Crossref]
  3. T. Ueda, W. L. Kath, Physica D 55, 166 (1992).
    [Crossref]
  4. C. R. Menyuk, P. K. A. Wai, J. Opt. Soc. Am. B 11, 1288 (1994).
    [Crossref]
  5. A. Papoulis, Probability, Random Variables, and Stochastic Processes (McGraw-Hill, New York, 1982).
  6. G. J. Foschini, C. D. Poole, J. Lightwave Technol. 9, 1439 (1991).
    [Crossref]

1994 (1)

1992 (1)

T. Ueda, W. L. Kath, Physica D 55, 166 (1992).
[Crossref]

1991 (2)

G. J. Foschini, C. D. Poole, J. Lightwave Technol. 9, 1439 (1991).
[Crossref]

P. K. A. Wai, C. R. Menyuk, H. H. Chen, Opt. Lett. 16, 687 (1991).
[Crossref]

1988 (1)

Chen, H. H.

Foschini, G. J.

G. J. Foschini, C. D. Poole, J. Lightwave Technol. 9, 1439 (1991).
[Crossref]

Kath, W. L.

T. Ueda, W. L. Kath, Physica D 55, 166 (1992).
[Crossref]

Menyuk, C. R.

Papoulis, A.

A. Papoulis, Probability, Random Variables, and Stochastic Processes (McGraw-Hill, New York, 1982).

Poole, C. D.

G. J. Foschini, C. D. Poole, J. Lightwave Technol. 9, 1439 (1991).
[Crossref]

C. D. Poole, Opt. Lett. 13, 687 (1988).
[Crossref] [PubMed]

Ueda, T.

T. Ueda, W. L. Kath, Physica D 55, 166 (1992).
[Crossref]

Wai, P. K. A.

J. Lightwave Technol. (1)

G. J. Foschini, C. D. Poole, J. Lightwave Technol. 9, 1439 (1991).
[Crossref]

J. Opt. Soc. Am. B (1)

Opt. Lett. (2)

Physica D (1)

T. Ueda, W. L. Kath, Physica D 55, 166 (1992).
[Crossref]

Other (1)

A. Papoulis, Probability, Random Variables, and Stochastic Processes (McGraw-Hill, New York, 1982).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Variation of the Stokes parameter 〈s1(z)〉 versus distance for hfiber = LB in the first model when measured with respect to the local polarization eigenaxes (solid curve) and with respect to the initial eigenaxes (dashed curve).

Fig. 2
Fig. 2

Decorrelation length of 〈s1(z)〉 and the polarization-mode dispersion versus hfiber/LB for the first model. The open circles represent the decorrelation length measured with respect to the local polarization eigenaxes, and the crosses represent measurement with respect to the initial axes. The dotted curve is the decorrelation length from the diffusion limit. The dotted–dashed curve is the relative differential time delay between the polarization modes from theoretical calculations, and the open squares are the results from numerical simulations.

Fig. 3
Fig. 3

Decorrelation length of 〈s1(z)〉 and the polarization-mode dispersion versus hfiber/LB for the second model. The notation is the same as that used in Fig. 2.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

E ( r , ω , z ) z = i ( β 1 + i α / 2 y y * β 2 + i a / 2 ) E ( r , ω , z ) ,
U ( r , ω , z ) z = i ( x y y - x ) U ( r , ω , z ) ,
x = b cos θ , y = b sin θ ,
d θ d z = g ( z ) , g ( z ) = 0 , g ( z ) g ( z + u ) = Γ δ ( u ) ,
f ( θ ) = 1 [ 2 π Γ ( z - z 0 ) ] 1 / 2 n = - + exp [ - ( θ + 2 n π ) 2 2 Γ ( z - z 0 ) ] ,
x ( z ) = b cos θ ( z ) = b exp [ - Γ ( z - z 0 ) / 2 ] ,
y ( z ) = b sin θ ( z ) = 0.
d x d z = - α x + g ( z ) , d y d z = - α y + h ( z ) ,
x ( z ) = 0 ,
x 2 ( z ) = ( x 0 2 - Γ / 2 α ) exp [ - 2 α ( z - z 0 ) ] + Γ / 2 α ,
x ( z + u ) x ( z ) = x 0 2 exp ( - α u ) .
τ 2 = 8 ( k 2 h fiber 2 [ z / h fiber + exp ( - z / h fiber ) - 1 ] ,

Metrics