Abstract

Two- and four-layer stratified volume holograms have been fabricated from the photorefractive polymeric material poly(methyl methacrylate): (1,3-dimethyl-2,2-tetramethylene-5-nitrobenzimidazoline):C60 and characterized by holographic four-wave mixing experiments. Coherent addition of diffracted fields from the individual layers is observed, leading to a diffraction efficiency that increases with the square of the active layer thickness. Electric-field switching of the diffraction efficiencies of individual layers is demonstrated. The angular selectivity of the diffraction efficiency is also characterized for one, two, and four active layers. The angular width of the peaks narrows with increasing total structure thickness in agreement with theory.

© 1994 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. E. Moerner, S. M. Silence, Chem. Rev. 94, 127 (1994), and references therein.
    [CrossRef]
  2. S. M. Silence, W. E. Moerner, D. M. Burland, “Photorefractive polymers,” in The Photorefractive Effect, D. D. Nolte, ed., Electronic Materials: Science and Technology Series (Kluwer Academic, Boston, Mass., to be published).
  3. L. Hesselink, M. C. Bashaw, Opt. Quantum Electron. 25, S611 (1993).
    [CrossRef]
  4. D. G. Fink, D. Christiansen, eds., Electronics Engineer’s Handbook (McGraw-Hill, New York, 1989), Chap. 6, p. 32.
  5. R. V. Johnson, A. R. Tanguay, Opt. Lett. 13, 189 (1988).
    [CrossRef] [PubMed]
  6. G. P. Nordin, A. R. Tanguay, Opt. Lett. 17, 1709 (1992).
    [CrossRef]
  7. G. P. Nordin, R. V. Johnson, A. R. Tanguay, J. Opt. Soc. Am. A 9, 2206 (1992).
    [CrossRef]
  8. S. M. Silence, R. J. Twieg, G. C. Bjorklund, W. E. Moerner, “Nondestructive readout in a photorefractive polymer,” submitted to Phys. Rev. Lett.
    [PubMed]
  9. S. M. Silence, J. J. Stankus, W. E. Moerner, J. C. Scott, G. C. Bjorklund, R. J. Twieg, “Photorefractive polymers based on dual-function dopants,” submitted to J. Phys. Chem.
  10. S. M. Silence, G. C Bjorklund, W. E. Moerner, “Optical trap activation in a photorefractive polymer,” Opt. Lett(to be published).
    [PubMed]
  11. J. Zhang, M. B. Sponsler, J. Am. Chem. Soc. 114, 1506 (1992).
    [CrossRef]
  12. L. Domash, J. Schwartz, A. Nelson, P. Levin, Proc. Soc. Photo-Opt. Instrum. Eng. 1662, 211 (1992).
  13. R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, T. J. Bunning, W. W. Adams, Appl. Phys. Lett. 64, 1074 (1994).
    [CrossRef]
  14. A. P. Yakimovich, Opt. Spectrosc. (USSR) 49, 85 (1981).
  15. H. Kogelnik, Bell Syst. Tech. J. 48, 2909 (1969).

1994

W. E. Moerner, S. M. Silence, Chem. Rev. 94, 127 (1994), and references therein.
[CrossRef]

R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, T. J. Bunning, W. W. Adams, Appl. Phys. Lett. 64, 1074 (1994).
[CrossRef]

1993

L. Hesselink, M. C. Bashaw, Opt. Quantum Electron. 25, S611 (1993).
[CrossRef]

1992

J. Zhang, M. B. Sponsler, J. Am. Chem. Soc. 114, 1506 (1992).
[CrossRef]

L. Domash, J. Schwartz, A. Nelson, P. Levin, Proc. Soc. Photo-Opt. Instrum. Eng. 1662, 211 (1992).

G. P. Nordin, A. R. Tanguay, Opt. Lett. 17, 1709 (1992).
[CrossRef]

G. P. Nordin, R. V. Johnson, A. R. Tanguay, J. Opt. Soc. Am. A 9, 2206 (1992).
[CrossRef]

1988

1981

A. P. Yakimovich, Opt. Spectrosc. (USSR) 49, 85 (1981).

1969

H. Kogelnik, Bell Syst. Tech. J. 48, 2909 (1969).

Adams, W. W.

R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, T. J. Bunning, W. W. Adams, Appl. Phys. Lett. 64, 1074 (1994).
[CrossRef]

Bashaw, M. C.

L. Hesselink, M. C. Bashaw, Opt. Quantum Electron. 25, S611 (1993).
[CrossRef]

Bjorklund, G. C

S. M. Silence, G. C Bjorklund, W. E. Moerner, “Optical trap activation in a photorefractive polymer,” Opt. Lett(to be published).
[PubMed]

Bjorklund, G. C.

S. M. Silence, R. J. Twieg, G. C. Bjorklund, W. E. Moerner, “Nondestructive readout in a photorefractive polymer,” submitted to Phys. Rev. Lett.
[PubMed]

S. M. Silence, J. J. Stankus, W. E. Moerner, J. C. Scott, G. C. Bjorklund, R. J. Twieg, “Photorefractive polymers based on dual-function dopants,” submitted to J. Phys. Chem.

Bunning, T. J.

R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, T. J. Bunning, W. W. Adams, Appl. Phys. Lett. 64, 1074 (1994).
[CrossRef]

Burland, D. M.

S. M. Silence, W. E. Moerner, D. M. Burland, “Photorefractive polymers,” in The Photorefractive Effect, D. D. Nolte, ed., Electronic Materials: Science and Technology Series (Kluwer Academic, Boston, Mass., to be published).

Domash, L.

L. Domash, J. Schwartz, A. Nelson, P. Levin, Proc. Soc. Photo-Opt. Instrum. Eng. 1662, 211 (1992).

Hesselink, L.

L. Hesselink, M. C. Bashaw, Opt. Quantum Electron. 25, S611 (1993).
[CrossRef]

Johnson, R. V.

Kogelnik, H.

H. Kogelnik, Bell Syst. Tech. J. 48, 2909 (1969).

Levin, P.

L. Domash, J. Schwartz, A. Nelson, P. Levin, Proc. Soc. Photo-Opt. Instrum. Eng. 1662, 211 (1992).

Moerner, W. E.

W. E. Moerner, S. M. Silence, Chem. Rev. 94, 127 (1994), and references therein.
[CrossRef]

S. M. Silence, W. E. Moerner, D. M. Burland, “Photorefractive polymers,” in The Photorefractive Effect, D. D. Nolte, ed., Electronic Materials: Science and Technology Series (Kluwer Academic, Boston, Mass., to be published).

S. M. Silence, J. J. Stankus, W. E. Moerner, J. C. Scott, G. C. Bjorklund, R. J. Twieg, “Photorefractive polymers based on dual-function dopants,” submitted to J. Phys. Chem.

S. M. Silence, R. J. Twieg, G. C. Bjorklund, W. E. Moerner, “Nondestructive readout in a photorefractive polymer,” submitted to Phys. Rev. Lett.
[PubMed]

S. M. Silence, G. C Bjorklund, W. E. Moerner, “Optical trap activation in a photorefractive polymer,” Opt. Lett(to be published).
[PubMed]

Natarajan, L. V.

R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, T. J. Bunning, W. W. Adams, Appl. Phys. Lett. 64, 1074 (1994).
[CrossRef]

Nelson, A.

L. Domash, J. Schwartz, A. Nelson, P. Levin, Proc. Soc. Photo-Opt. Instrum. Eng. 1662, 211 (1992).

Nordin, G. P.

Schwartz, J.

L. Domash, J. Schwartz, A. Nelson, P. Levin, Proc. Soc. Photo-Opt. Instrum. Eng. 1662, 211 (1992).

Scott, J. C.

S. M. Silence, J. J. Stankus, W. E. Moerner, J. C. Scott, G. C. Bjorklund, R. J. Twieg, “Photorefractive polymers based on dual-function dopants,” submitted to J. Phys. Chem.

Silence, S. M.

W. E. Moerner, S. M. Silence, Chem. Rev. 94, 127 (1994), and references therein.
[CrossRef]

S. M. Silence, J. J. Stankus, W. E. Moerner, J. C. Scott, G. C. Bjorklund, R. J. Twieg, “Photorefractive polymers based on dual-function dopants,” submitted to J. Phys. Chem.

S. M. Silence, W. E. Moerner, D. M. Burland, “Photorefractive polymers,” in The Photorefractive Effect, D. D. Nolte, ed., Electronic Materials: Science and Technology Series (Kluwer Academic, Boston, Mass., to be published).

S. M. Silence, R. J. Twieg, G. C. Bjorklund, W. E. Moerner, “Nondestructive readout in a photorefractive polymer,” submitted to Phys. Rev. Lett.
[PubMed]

S. M. Silence, G. C Bjorklund, W. E. Moerner, “Optical trap activation in a photorefractive polymer,” Opt. Lett(to be published).
[PubMed]

Sponsler, M. B.

J. Zhang, M. B. Sponsler, J. Am. Chem. Soc. 114, 1506 (1992).
[CrossRef]

Stankus, J. J.

S. M. Silence, J. J. Stankus, W. E. Moerner, J. C. Scott, G. C. Bjorklund, R. J. Twieg, “Photorefractive polymers based on dual-function dopants,” submitted to J. Phys. Chem.

Sutherland, R. L.

R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, T. J. Bunning, W. W. Adams, Appl. Phys. Lett. 64, 1074 (1994).
[CrossRef]

Tanguay, A. R.

Tondiglia, V. P.

R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, T. J. Bunning, W. W. Adams, Appl. Phys. Lett. 64, 1074 (1994).
[CrossRef]

Twieg, R. J.

S. M. Silence, J. J. Stankus, W. E. Moerner, J. C. Scott, G. C. Bjorklund, R. J. Twieg, “Photorefractive polymers based on dual-function dopants,” submitted to J. Phys. Chem.

S. M. Silence, R. J. Twieg, G. C. Bjorklund, W. E. Moerner, “Nondestructive readout in a photorefractive polymer,” submitted to Phys. Rev. Lett.
[PubMed]

Yakimovich, A. P.

A. P. Yakimovich, Opt. Spectrosc. (USSR) 49, 85 (1981).

Zhang, J.

J. Zhang, M. B. Sponsler, J. Am. Chem. Soc. 114, 1506 (1992).
[CrossRef]

Appl. Phys. Lett.

R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, T. J. Bunning, W. W. Adams, Appl. Phys. Lett. 64, 1074 (1994).
[CrossRef]

Bell Syst. Tech. J.

H. Kogelnik, Bell Syst. Tech. J. 48, 2909 (1969).

Chem. Rev.

W. E. Moerner, S. M. Silence, Chem. Rev. 94, 127 (1994), and references therein.
[CrossRef]

J. Am. Chem. Soc.

J. Zhang, M. B. Sponsler, J. Am. Chem. Soc. 114, 1506 (1992).
[CrossRef]

J. Opt. Soc. Am. A

Opt. Lett.

Opt. Quantum Electron.

L. Hesselink, M. C. Bashaw, Opt. Quantum Electron. 25, S611 (1993).
[CrossRef]

Opt. Spectrosc.

A. P. Yakimovich, Opt. Spectrosc. (USSR) 49, 85 (1981).

Proc. Soc. Photo-Opt. Instrum. Eng.

L. Domash, J. Schwartz, A. Nelson, P. Levin, Proc. Soc. Photo-Opt. Instrum. Eng. 1662, 211 (1992).

Other

S. M. Silence, R. J. Twieg, G. C. Bjorklund, W. E. Moerner, “Nondestructive readout in a photorefractive polymer,” submitted to Phys. Rev. Lett.
[PubMed]

S. M. Silence, J. J. Stankus, W. E. Moerner, J. C. Scott, G. C. Bjorklund, R. J. Twieg, “Photorefractive polymers based on dual-function dopants,” submitted to J. Phys. Chem.

S. M. Silence, G. C Bjorklund, W. E. Moerner, “Optical trap activation in a photorefractive polymer,” Opt. Lett(to be published).
[PubMed]

S. M. Silence, W. E. Moerner, D. M. Burland, “Photorefractive polymers,” in The Photorefractive Effect, D. D. Nolte, ed., Electronic Materials: Science and Technology Series (Kluwer Academic, Boston, Mass., to be published).

D. G. Fink, D. Christiansen, eds., Electronics Engineer’s Handbook (McGraw-Hill, New York, 1989), Chap. 6, p. 32.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

Schematic diagram of the four-layer electrically selectable SVHOE structure (not to scale). Voltage may be applied to each layer independently.

Fig. 2.
Fig. 2.

Diffraction efficiency during a 60-s write of a two-layer structure with the electric field applied to both layers (circles), to layer 1 only (triangles), and to layer 2 only (squares). The solid curve shows the theoretical sum of the two individual layers, assuming coherent addition.

Fig. 3.
Fig. 3.

Angular selectivity of a four-layer SVHOE structure with different combinations of the layers active. The diffraction efficiency is plotted versus the internal angle θ relative to the Bragg angle: (a) a single layer active in the structure, (b) two adjacent layers active (160-μm active layer, 155-μm spacer), (c) two farthest apart layers active (∼700-μm separation between active layers), (d) four adjacent layers active.

Metrics