Abstract

We propose a linewidth-narrowing mechanism in lasers by nonlinear absorptive wave mixing of the counterpropagating beams in the cavity. We give a theoretical analysis and report on a demonstration of the effect with an erbium-doped fiber laser. The system also exhibits bistability in the dependence of the oscillation intensity versus pump power.

© 1994 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Sargent, M. O. Scully, W. E. Lamb, Laser Physics (Addison-Wesley, London, 1977).
  2. A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986), p. 321.
  3. R. P. Agrawal, M. Lax, J. Opt. Soc. Am. 69, 1717 (1979);R. P. Agrawal, M. Lax, J. Opt. Soc. Am. 71, 515 (1981);
    [CrossRef]
  4. B. Fischer, J. L. Zyskind, J. W. Sulhoff, D. J. DiGiovanni, Opt. Lett. 18, 2108 (1993);Electron. Lett. 29, 1858 (1993).
    [CrossRef] [PubMed]
  5. B. Fischer, O. Werner, M. Horowitz, Appl. Phys. Lett. 58, 2729 (1993).
    [CrossRef]
  6. E. Desurvire, J. Lightwave Technol. 8, 1517 (1990).
    [CrossRef]
  7. D. G. Steel, R. C. Lind, J. F. Lam, Phys. Rev. A 23, 2513 (1981).
    [CrossRef]
  8. M. Horowitz, R. Daisy, B. Fischer, J. L. Zyskind, Electron. Lett. 30, 648 (1994).
    [CrossRef]

1994 (1)

M. Horowitz, R. Daisy, B. Fischer, J. L. Zyskind, Electron. Lett. 30, 648 (1994).
[CrossRef]

1993 (2)

1990 (1)

E. Desurvire, J. Lightwave Technol. 8, 1517 (1990).
[CrossRef]

1981 (1)

D. G. Steel, R. C. Lind, J. F. Lam, Phys. Rev. A 23, 2513 (1981).
[CrossRef]

1979 (1)

Agrawal, R. P.

Daisy, R.

M. Horowitz, R. Daisy, B. Fischer, J. L. Zyskind, Electron. Lett. 30, 648 (1994).
[CrossRef]

Desurvire, E.

E. Desurvire, J. Lightwave Technol. 8, 1517 (1990).
[CrossRef]

DiGiovanni, D. J.

Fischer, B.

M. Horowitz, R. Daisy, B. Fischer, J. L. Zyskind, Electron. Lett. 30, 648 (1994).
[CrossRef]

B. Fischer, O. Werner, M. Horowitz, Appl. Phys. Lett. 58, 2729 (1993).
[CrossRef]

B. Fischer, J. L. Zyskind, J. W. Sulhoff, D. J. DiGiovanni, Opt. Lett. 18, 2108 (1993);Electron. Lett. 29, 1858 (1993).
[CrossRef] [PubMed]

Horowitz, M.

M. Horowitz, R. Daisy, B. Fischer, J. L. Zyskind, Electron. Lett. 30, 648 (1994).
[CrossRef]

B. Fischer, O. Werner, M. Horowitz, Appl. Phys. Lett. 58, 2729 (1993).
[CrossRef]

Lam, J. F.

D. G. Steel, R. C. Lind, J. F. Lam, Phys. Rev. A 23, 2513 (1981).
[CrossRef]

Lamb, W. E.

M. Sargent, M. O. Scully, W. E. Lamb, Laser Physics (Addison-Wesley, London, 1977).

Lax, M.

Lind, R. C.

D. G. Steel, R. C. Lind, J. F. Lam, Phys. Rev. A 23, 2513 (1981).
[CrossRef]

Sargent, M.

M. Sargent, M. O. Scully, W. E. Lamb, Laser Physics (Addison-Wesley, London, 1977).

Scully, M. O.

M. Sargent, M. O. Scully, W. E. Lamb, Laser Physics (Addison-Wesley, London, 1977).

Siegman, A. E.

A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986), p. 321.

Steel, D. G.

D. G. Steel, R. C. Lind, J. F. Lam, Phys. Rev. A 23, 2513 (1981).
[CrossRef]

Sulhoff, J. W.

Werner, O.

B. Fischer, O. Werner, M. Horowitz, Appl. Phys. Lett. 58, 2729 (1993).
[CrossRef]

Zyskind, J. L.

Appl. Phys. Lett. (1)

B. Fischer, O. Werner, M. Horowitz, Appl. Phys. Lett. 58, 2729 (1993).
[CrossRef]

Electron. Lett. (1)

M. Horowitz, R. Daisy, B. Fischer, J. L. Zyskind, Electron. Lett. 30, 648 (1994).
[CrossRef]

J. Lightwave Technol. (1)

E. Desurvire, J. Lightwave Technol. 8, 1517 (1990).
[CrossRef]

J. Opt. Soc. Am. (1)

Opt. Lett. (1)

Phys. Rev. A (1)

D. G. Steel, R. C. Lind, J. F. Lam, Phys. Rev. A 23, 2513 (1981).
[CrossRef]

Other (2)

M. Sargent, M. O. Scully, W. E. Lamb, Laser Physics (Addison-Wesley, London, 1977).

A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986), p. 321.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Laser system with the saturable amplifier (S-Am) and the saturable absorber (S-Ab). PR’s, π/4 polarization rotators; P, polarizer; M’s, mirrors.

Fig. 2.
Fig. 2.

(a) Reflectivities from the saturable absorber with the mirror (the left half of Fig. 1) with γ0l = −2 and a mirror reflectivity of 95% for the following cases: one pair of counterpropagating beams (i) with mutual coupling and interference and (ii) without coupling; (iii) an extra signal beam, affected by the grating of the first pair, where the signal has the same frequency but is 180° out of phase; and (iv) for a signal out of the Bragg matching frequency. Iin is the intensity of the input beam I−1 for (i) and (ii) and is an added small-signal intensity for (iii) and (iv). (b) As in (a) but for the saturable gain case (γ0l = 2), and the input here in (i) and (ii) is I+1.

Fig. 3.
Fig. 3.

Theoretical output of the oscillation intensity versus small-signal gain g with (solid curve) and without (dashed curve) coupling of the counterpropagating beams in the saturable absorber. We used γ0l = −1.7 for the saturable absorber, other losses (due mainly to interfiber couplings) of 67% for one cavity round trip, and mirror reflectivity of 95%. (b) Experimental output of the oscillation intensity versus pumping power (with a 980-nm laser). The squares and the circles describe the experimental data for increasing and decreasing Ipump, respectively.

Fig. 4.
Fig. 4.

Spectra of the fiber laser (a) without and (b) with the saturable absorber section.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

d A ± j d z = ± γ 0 ( 1 + i Ω ) 2 ( a 2 b 2 ) 1 / 2 [ A ± j a ( a 2 b 2 ) 1 / 2 2 A j C ± j ] ,

Metrics