Abstract

We found that a slightly rough thin dielectric film polarizes diffusely scattered light. There is a discrete set of angles of incidence and observation for which the intensity of a nonspecular diffuse P-polarized component is significantly greater than that for S polarization.

© 1994 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Krishen, IEEE Trans. Antennas Propag. AP-18, 573 (1970).
    [Crossref]
  2. E. Kretschmann, E. Kroger, J. Opt. Soc. Am. 65, 150 (1975).
    [Crossref]
  3. J. M. Elson, J. Opt. Soc. Am. 66, 682 (1976).
    [Crossref]
  4. E. Bahar, M. A. Fitzwater, J. Opt. Soc. Am. A 2, 2295 (1985).
    [Crossref]
  5. C. Amra, J. Opt. Soc. Am. A 11,197 (1994).
    [Crossref]
  6. F. Bass, I. Fuks, Wave Scattering from Statistically Rough Surfaces (Pergamon, New York, 1979), Chap. 4.

1994 (1)

1985 (1)

1976 (1)

1975 (1)

1970 (1)

K. Krishen, IEEE Trans. Antennas Propag. AP-18, 573 (1970).
[Crossref]

Amra, C.

Bahar, E.

Bass, F.

F. Bass, I. Fuks, Wave Scattering from Statistically Rough Surfaces (Pergamon, New York, 1979), Chap. 4.

Elson, J. M.

Fitzwater, M. A.

Fuks, I.

F. Bass, I. Fuks, Wave Scattering from Statistically Rough Surfaces (Pergamon, New York, 1979), Chap. 4.

Kretschmann, E.

Krishen, K.

K. Krishen, IEEE Trans. Antennas Propag. AP-18, 573 (1970).
[Crossref]

Kroger, E.

IEEE Trans. Antennas Propag (1)

K. Krishen, IEEE Trans. Antennas Propag. AP-18, 573 (1970).
[Crossref]

J. Opt. Soc. Am. (2)

J. Opt. Soc. Am. A (2)

Other (1)

F. Bass, I. Fuks, Wave Scattering from Statistically Rough Surfaces (Pergamon, New York, 1979), Chap. 4.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (1)

Fig. 1.
Fig. 1.

Scattering cross sections 103σpp (solid curve) and 103σss (dashed curve) versus the angle of scattering θsc.

Equations (19)

Equations on this page are rendered with MathJax. Learn more.

ξ ( r 1 ) ξ ( r 2 ) = W ( r 1 r 2 ) , W ( 0 ) = h 2 , ξ ( r 1 ) ξ ( r 2 ) ξ ( r 3 ) ξ ( r 4 ) = W ( 4 ) ( r 1 r 4 , r 2 r 4 , r 3 r 4 ) ,
e ^ s ( P ) = 1 p [ e ^ z × p ] , e ^ p ( P ) = 1 P [ e ^ s ( p ) × P ] ,
[ n × E ( R ) ] z ξ ( r ) + 0 = [ n × E ( R ) ] z ξ ( r ) 0 , [ n × H ( R ) ] z ξ ( r ) + 0 = [ n × H ( R ) ] z ξ ( r ) 0 , E ( R ) z d = 0 ,
E ( i ) ( R ) = e ^ i ( P in ) exp [ i p in r i α 0 ( p in ) z ] + d q j e ^ j ( Q ) exp [ i qr + i α 0 ( q ) z ] R j i ( q , p in ) ,
H ( i ) ( R ) = 1 k 0 e ^ i ( P in ) exp [ i p in r i α 0 ( p in ) z ] + 1 k 0 d q j [ Q × e ^ j ( Q ) ] × exp [ i qr + i α 0 ( q ) z ] R j i ( q , p in ) ,
I sc I in = | p | < k 0 d 2 p α 0 ( p ) α 0 ( p in ) S j i ( p , p in ) = sin θ d θ d φ σ i j ( p sc , p in ) ,
σ j i ( p sc , p in ) = k 0 2 α 0 ( p sc ) α 0 ( p in ) S j i ( p sc , p in ) .
S j i ( p , p 0 ) δ ( p p ) = δ R j i ( p , p 0 ) δ R j i ( p , p 0 ) , δ R j i ( p , p 0 ) = R j i ( p , p 0 ) R j i ( p , p 0 ) ,
E i ( R ) = d q exp ( i qr ) j e ^ j ( Q ) T j i ( q , p in ) × sin [ α ( q ) ( z + d ) ] ,
H i ( R ) = 1 k 0 d q exp ( i qr ) j [ Q × e ^ j ( Q ) ] T j i ( q , p in ) × sin [ α ( q ) ( z + d ) ] .
R j i = R j i ( 0 ) + R j i ( 1 ) + , T j i = T j i ( 0 ) + T j i ( 1 ) + ,
σ j i ( 1 ) ( p sc , p in ) = 4 ( 1 ) 2 k 0 4 g j ( p sc ) g i ( p in ) × f j i ( 1 ) ( p sc , p in ) W ˜ ( p sc p in ) ,
[ f s s ( 1 ) f s p ( 1 ) f p s ( 1 ) f p p ( 1 ) ] = [ cos 2 ϕ μ 2 ( p in ) sin 2 ϕ μ 2 ( p sc ) sin 2 ϕ [ p sc p in k 0 2 + μ ( p sc ) μ ( p in ) cos ϕ ] 2 ] ,
μ ( p ) = α ( p ) k 0 tan α ( p ) d , g s ( p ) = k 0 α 0 ( p ) tan 2 [ α ( p ) d ] α 0 2 ( p ) tan 2 [ α ( p ) d ] + α 2 ( p ) , g p ( p ) = k 0 α 0 ( p ) 2 α 0 2 ( p ) + α ( p ) 2 tan [ α ( p ) d ] , W ˜ ( p q ) δ ( q q ) = ξ ˜ ( p q ) ξ ˜ * ( p q ) , ξ ˜ ( p ) = d r ( 2 π ) 2 exp ( i pr ) ξ ( r ) ,
α ( p in ) d = k 0 d sin 2 Θ n = π n ,
σ s s ( 1 ) ( θ in = Θ n ) = σ p s ( 1 ) ( θ in = Θ n ) = σ s p ( 1 ) ( θ in = Θ n ) 0.
σ p p ( 1 ) ( θ in = Θ n ) = 4 ( 1 ) 2 g p ( p sc ) k 0 α 0 ( p sc ) sin 2 θ sc × sin 2 Θ n k 0 4 W ˜ ( p sc p in ) ,
σ s s ( 2 ) ( θ in = Θ n ) = 1 4 ( 1 ) 2 g s ( p sc ) cos Θ n cos 2 ϕ k 0 6 × d q d q W ˜ ( 4 ) ( S + q , S q , q ) ,
S = p sc p in 2 , W ˜ ( 4 ) ( q p , k q , p q ) δ ( k k ) = ξ ˜ ( p q ) ξ ˜ ( q k ) ξ ˜ * ( p q ) ξ ˜ * ( q k ) .

Metrics