Abstract

Efficient laser emission of flash-lamp-pumped Nd:YAG rods at a wavelength of 1.444 μm is reported. A maximum average output power of 100 W at pulse energies of 5.5 J and a pulse duration of 0.65 ms was achieved. The highest electrical-to-optical overall efficiency of 1.3% was attained with a single elliptical silver pump cavity with europium-doped quartz as a spectral filter. The 1.444-μm performance as well as the output characteristics at 1.064 and 1.32 μm of Nd:YAG were investigated as a function of doping concentration and rod diameter.

© 1994 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Marling, IEEE J. Quantum Electron. QE-14, 56 (1978).
    [CrossRef]
  2. S. K Wong, P. Mathieu, P. Pace, Appl. Phys. Lett. 57, 650 (1990).
    [CrossRef]
  3. J. Tulip, “Long-wavelength Nd:YAG laser,” U.S. patent5,048,023 (September9, 1992).
  4. V. B. Sigachev, M. E. Doroshenko, V. V. Osiko, M. I. Timshechkin, in Conference on Lasers and Electro-Optics, Vol. 11 of 1993 OSA Technical Digest and Series (Optical Society of America, Washington, D.C., 1993), p. 494.
  5. N. Hodgson, H. Weber, IEEE J. Quantum Electron. 29, 2497 (1993).
    [CrossRef]
  6. N. Hodgson, D. J. Golding, Laser Optoelektron. 25, 38 (1993).
  7. K. Fuhrmann, N. Hodgson, F. Hollinger, H. Weber, J. Appl. Phys. 62, 4041 (1987).
    [CrossRef]

1993 (2)

N. Hodgson, H. Weber, IEEE J. Quantum Electron. 29, 2497 (1993).
[CrossRef]

N. Hodgson, D. J. Golding, Laser Optoelektron. 25, 38 (1993).

1990 (1)

S. K Wong, P. Mathieu, P. Pace, Appl. Phys. Lett. 57, 650 (1990).
[CrossRef]

1987 (1)

K. Fuhrmann, N. Hodgson, F. Hollinger, H. Weber, J. Appl. Phys. 62, 4041 (1987).
[CrossRef]

1978 (1)

J. Marling, IEEE J. Quantum Electron. QE-14, 56 (1978).
[CrossRef]

Doroshenko, M. E.

V. B. Sigachev, M. E. Doroshenko, V. V. Osiko, M. I. Timshechkin, in Conference on Lasers and Electro-Optics, Vol. 11 of 1993 OSA Technical Digest and Series (Optical Society of America, Washington, D.C., 1993), p. 494.

Fuhrmann, K.

K. Fuhrmann, N. Hodgson, F. Hollinger, H. Weber, J. Appl. Phys. 62, 4041 (1987).
[CrossRef]

Golding, D. J.

N. Hodgson, D. J. Golding, Laser Optoelektron. 25, 38 (1993).

Hodgson, N.

N. Hodgson, D. J. Golding, Laser Optoelektron. 25, 38 (1993).

N. Hodgson, H. Weber, IEEE J. Quantum Electron. 29, 2497 (1993).
[CrossRef]

K. Fuhrmann, N. Hodgson, F. Hollinger, H. Weber, J. Appl. Phys. 62, 4041 (1987).
[CrossRef]

Hollinger, F.

K. Fuhrmann, N. Hodgson, F. Hollinger, H. Weber, J. Appl. Phys. 62, 4041 (1987).
[CrossRef]

Marling, J.

J. Marling, IEEE J. Quantum Electron. QE-14, 56 (1978).
[CrossRef]

Mathieu, P.

S. K Wong, P. Mathieu, P. Pace, Appl. Phys. Lett. 57, 650 (1990).
[CrossRef]

Osiko, V. V.

V. B. Sigachev, M. E. Doroshenko, V. V. Osiko, M. I. Timshechkin, in Conference on Lasers and Electro-Optics, Vol. 11 of 1993 OSA Technical Digest and Series (Optical Society of America, Washington, D.C., 1993), p. 494.

Pace, P.

S. K Wong, P. Mathieu, P. Pace, Appl. Phys. Lett. 57, 650 (1990).
[CrossRef]

Sigachev, V. B.

V. B. Sigachev, M. E. Doroshenko, V. V. Osiko, M. I. Timshechkin, in Conference on Lasers and Electro-Optics, Vol. 11 of 1993 OSA Technical Digest and Series (Optical Society of America, Washington, D.C., 1993), p. 494.

Timshechkin, M. I.

V. B. Sigachev, M. E. Doroshenko, V. V. Osiko, M. I. Timshechkin, in Conference on Lasers and Electro-Optics, Vol. 11 of 1993 OSA Technical Digest and Series (Optical Society of America, Washington, D.C., 1993), p. 494.

Tulip, J.

J. Tulip, “Long-wavelength Nd:YAG laser,” U.S. patent5,048,023 (September9, 1992).

Weber, H.

N. Hodgson, H. Weber, IEEE J. Quantum Electron. 29, 2497 (1993).
[CrossRef]

K. Fuhrmann, N. Hodgson, F. Hollinger, H. Weber, J. Appl. Phys. 62, 4041 (1987).
[CrossRef]

Wong, S. K

S. K Wong, P. Mathieu, P. Pace, Appl. Phys. Lett. 57, 650 (1990).
[CrossRef]

Appl. Phys. Lett. (1)

S. K Wong, P. Mathieu, P. Pace, Appl. Phys. Lett. 57, 650 (1990).
[CrossRef]

IEEE J. Quantum Electron. (2)

N. Hodgson, H. Weber, IEEE J. Quantum Electron. 29, 2497 (1993).
[CrossRef]

J. Marling, IEEE J. Quantum Electron. QE-14, 56 (1978).
[CrossRef]

J. Appl. Phys. (1)

K. Fuhrmann, N. Hodgson, F. Hollinger, H. Weber, J. Appl. Phys. 62, 4041 (1987).
[CrossRef]

Laser Optoelektron. (1)

N. Hodgson, D. J. Golding, Laser Optoelektron. 25, 38 (1993).

Other (2)

J. Tulip, “Long-wavelength Nd:YAG laser,” U.S. patent5,048,023 (September9, 1992).

V. B. Sigachev, M. E. Doroshenko, V. V. Osiko, M. I. Timshechkin, in Conference on Lasers and Electro-Optics, Vol. 11 of 1993 OSA Technical Digest and Series (Optical Society of America, Washington, D.C., 1993), p. 494.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic of the laser head used and the cross-sectional view of the Eu:SiO2/Ag pump cavity. The symmetrical flat–flat resonator has a length of 40 cm. When operated at 1.444 μm, two external mirrors are used to suppress spurious wavelengths. HR, high reflector; R, reflector.

Fig. 2
Fig. 2

Measured output energy per pulse at the three main wavelengths as a function of input energy. The single elliptical Eu:SiO2/Ag pump cavity has a repetition rate of 15 Hz, a rod diameter of 8 mm, a Nd concentration of 1.0 at. %, and a pulse duration of 0.65 ms.

Fig. 3
Fig. 3

Measured maximum output energy per pulse at 1.444 μm for different rod diameters as a function of Nd concentration. The curve parameter is the electrical input energy (double elliptical Eu:SiO2/Ag cavity). The output coupling was varied for each data point.

Fig. 4
Fig. 4

Measured beam quality factor M2 (86.5% energy content) at 1.444 μm as a function of average input power for three different rods. The double elliptical Eu:SiO2/Ag cavity has a repetition rate of 15 Hz with 20% output coupling. The upper curve represents the calculated M2 factor for the 6.35-mm rod by use of Gaussian matrix optics. The lower curve shows the result of a numerical diffraction calculation for the same rod, including gain and spherical aberration.

Fig. 5
Fig. 5

Measured average output power as a function of input energy for 1.444-μm Nd:YAG lasers with optimized performance for (a) the single elliptical and (b) the double elliptical Eu:SiO2/Ag pump cavity. The curve parameter is the repetition rate.

Metrics