Abstract

We describe a frequency-doubling monolithic standing-wave resonator made of MgO:LiNbO3 with dielectric mirror coatings for impedance matching near 100 mW input power and near-optimum nonlinear coupling. An external conversion efficiency of 82% has been achieved

© 1994 Optical Society of America

Full Article  |  PDF Article

Corrections

R. Paschotta, K. Fiedler, P. Kürz, R. Henking, S. Schiller, and J. Mlynek, "82% Efficient continuous-wave frequency doubling of 1.06 μm with a monolithic MgO:LiNbO3 resonator: errata," Opt. Lett. 20, 345-345 (1995)
https://www.osapublishing.org/ol/abstract.cfm?uri=ol-20-3-345

References

  • View by:
  • |
  • |
  • |

  1. W. J. Kozlovsky, C. D. Nabors, R. L. Byer, Appl. Opt. 12, 1014 (1987).
  2. W. J. Kozlovsky, C. D. Nabors, R. L. Byer, IEEE J. Quantum Electron. 24, 913 (1988).
    [CrossRef]
  3. W. J. Kozlovsky, W. Lenth, E. E. Latta, A. Moser, G. L. Bona, Appl. Phys. Lett. 56, 2291 (1990).
    [CrossRef]
  4. D. C. Gerstenberger, G. E. Tye, R. W. Wallace, Opt. Lett. 16, 992 (1991).
    [CrossRef] [PubMed]
  5. D. H. Jundt, M. M. Fejer, R. L. Byer, R. G. Norwood, P. F. Bordui, Opt. Lett. 16, 1856 (1991).
    [CrossRef] [PubMed]
  6. S. T. Yang, C. C. Pohalski, E. K. Gustafson, R. L. Byer, R. S. Feigelson, R. J. Raymakers, R. K. Route, Opt. Lett. 16, 1493 (1991).
    [CrossRef] [PubMed]
  7. Z. Y. Ou, S. F. Pereira, E. S. Plzik, H. J. Kimble, Opt. Lett. 17, 640 (1992).
    [CrossRef] [PubMed]
  8. Our material was bought from Crystal Technology, Palo Alto, Calif.
  9. G. D. Boyd, D. A. Kleinman, J. Appl. Phys. 39, 3597 (1968).
    [CrossRef]
  10. A similar result is discussed inL.-A. Wu, H. J. Kimble, J. Opt. Soc. Am. B 2, 698 (1985).
    [CrossRef]
  11. A. Ashkin, G. D. Boyd, J. M. Dziedzic, IEEE J. Quantum Electron. QE-2, 109 (1966).
    [CrossRef]
  12. K. Fiedler, S. Schiller, R. Paschotta, P. Kürtz, J. Mlynek, Opt. Lett. 18, 1786 (1993).
    [CrossRef] [PubMed]
  13. Z. Y. Ou, H. J. Kimble, Opt. Lett. 18, 1053 (1993).
    [CrossRef] [PubMed]
  14. R. Paschotta, K. Fiedler, P. Kürz, J. Mlynek, Appl. Phys. B 58, 117 (1994). Note that the final result for the parameter κ of the standing-wave resonator, given in Eq. (11), is too small by a factor of 2 The same applies to the values given in the figure captions.
    [CrossRef]
  15. R. C. Eckardt, H. Masuda, Y. X. Fan, R. L. Byer, IEEE J. Quantum Electron. 26, 922 (1990).
    [CrossRef]
  16. R. Paschotta, M. Collett, P. Kürz, K. Fiedler, J. Mlynek, Phys. Rev. Lett. 72, 3807 (1994).
    [CrossRef] [PubMed]

1994 (2)

R. Paschotta, K. Fiedler, P. Kürz, J. Mlynek, Appl. Phys. B 58, 117 (1994). Note that the final result for the parameter κ of the standing-wave resonator, given in Eq. (11), is too small by a factor of 2 The same applies to the values given in the figure captions.
[CrossRef]

R. Paschotta, M. Collett, P. Kürz, K. Fiedler, J. Mlynek, Phys. Rev. Lett. 72, 3807 (1994).
[CrossRef] [PubMed]

1993 (2)

1992 (1)

1991 (3)

1990 (2)

R. C. Eckardt, H. Masuda, Y. X. Fan, R. L. Byer, IEEE J. Quantum Electron. 26, 922 (1990).
[CrossRef]

W. J. Kozlovsky, W. Lenth, E. E. Latta, A. Moser, G. L. Bona, Appl. Phys. Lett. 56, 2291 (1990).
[CrossRef]

1988 (1)

W. J. Kozlovsky, C. D. Nabors, R. L. Byer, IEEE J. Quantum Electron. 24, 913 (1988).
[CrossRef]

1987 (1)

W. J. Kozlovsky, C. D. Nabors, R. L. Byer, Appl. Opt. 12, 1014 (1987).

1985 (1)

A similar result is discussed inL.-A. Wu, H. J. Kimble, J. Opt. Soc. Am. B 2, 698 (1985).
[CrossRef]

1968 (1)

G. D. Boyd, D. A. Kleinman, J. Appl. Phys. 39, 3597 (1968).
[CrossRef]

1966 (1)

A. Ashkin, G. D. Boyd, J. M. Dziedzic, IEEE J. Quantum Electron. QE-2, 109 (1966).
[CrossRef]

Ashkin, A.

A. Ashkin, G. D. Boyd, J. M. Dziedzic, IEEE J. Quantum Electron. QE-2, 109 (1966).
[CrossRef]

Bona, G. L.

W. J. Kozlovsky, W. Lenth, E. E. Latta, A. Moser, G. L. Bona, Appl. Phys. Lett. 56, 2291 (1990).
[CrossRef]

Bordui, P. F.

Boyd, G. D.

G. D. Boyd, D. A. Kleinman, J. Appl. Phys. 39, 3597 (1968).
[CrossRef]

A. Ashkin, G. D. Boyd, J. M. Dziedzic, IEEE J. Quantum Electron. QE-2, 109 (1966).
[CrossRef]

Byer, R. L.

D. H. Jundt, M. M. Fejer, R. L. Byer, R. G. Norwood, P. F. Bordui, Opt. Lett. 16, 1856 (1991).
[CrossRef] [PubMed]

S. T. Yang, C. C. Pohalski, E. K. Gustafson, R. L. Byer, R. S. Feigelson, R. J. Raymakers, R. K. Route, Opt. Lett. 16, 1493 (1991).
[CrossRef] [PubMed]

R. C. Eckardt, H. Masuda, Y. X. Fan, R. L. Byer, IEEE J. Quantum Electron. 26, 922 (1990).
[CrossRef]

W. J. Kozlovsky, C. D. Nabors, R. L. Byer, IEEE J. Quantum Electron. 24, 913 (1988).
[CrossRef]

W. J. Kozlovsky, C. D. Nabors, R. L. Byer, Appl. Opt. 12, 1014 (1987).

Collett, M.

R. Paschotta, M. Collett, P. Kürz, K. Fiedler, J. Mlynek, Phys. Rev. Lett. 72, 3807 (1994).
[CrossRef] [PubMed]

Dziedzic, J. M.

A. Ashkin, G. D. Boyd, J. M. Dziedzic, IEEE J. Quantum Electron. QE-2, 109 (1966).
[CrossRef]

Eckardt, R. C.

R. C. Eckardt, H. Masuda, Y. X. Fan, R. L. Byer, IEEE J. Quantum Electron. 26, 922 (1990).
[CrossRef]

Fan, Y. X.

R. C. Eckardt, H. Masuda, Y. X. Fan, R. L. Byer, IEEE J. Quantum Electron. 26, 922 (1990).
[CrossRef]

Feigelson, R. S.

Fejer, M. M.

Fiedler, K.

R. Paschotta, K. Fiedler, P. Kürz, J. Mlynek, Appl. Phys. B 58, 117 (1994). Note that the final result for the parameter κ of the standing-wave resonator, given in Eq. (11), is too small by a factor of 2 The same applies to the values given in the figure captions.
[CrossRef]

R. Paschotta, M. Collett, P. Kürz, K. Fiedler, J. Mlynek, Phys. Rev. Lett. 72, 3807 (1994).
[CrossRef] [PubMed]

K. Fiedler, S. Schiller, R. Paschotta, P. Kürtz, J. Mlynek, Opt. Lett. 18, 1786 (1993).
[CrossRef] [PubMed]

Gerstenberger, D. C.

Gustafson, E. K.

Jundt, D. H.

Kimble, H. J.

Kleinman, D. A.

G. D. Boyd, D. A. Kleinman, J. Appl. Phys. 39, 3597 (1968).
[CrossRef]

Kozlovsky, W. J.

W. J. Kozlovsky, W. Lenth, E. E. Latta, A. Moser, G. L. Bona, Appl. Phys. Lett. 56, 2291 (1990).
[CrossRef]

W. J. Kozlovsky, C. D. Nabors, R. L. Byer, IEEE J. Quantum Electron. 24, 913 (1988).
[CrossRef]

W. J. Kozlovsky, C. D. Nabors, R. L. Byer, Appl. Opt. 12, 1014 (1987).

Kürtz, P.

Kürz, P.

R. Paschotta, K. Fiedler, P. Kürz, J. Mlynek, Appl. Phys. B 58, 117 (1994). Note that the final result for the parameter κ of the standing-wave resonator, given in Eq. (11), is too small by a factor of 2 The same applies to the values given in the figure captions.
[CrossRef]

R. Paschotta, M. Collett, P. Kürz, K. Fiedler, J. Mlynek, Phys. Rev. Lett. 72, 3807 (1994).
[CrossRef] [PubMed]

Latta, E. E.

W. J. Kozlovsky, W. Lenth, E. E. Latta, A. Moser, G. L. Bona, Appl. Phys. Lett. 56, 2291 (1990).
[CrossRef]

Lenth, W.

W. J. Kozlovsky, W. Lenth, E. E. Latta, A. Moser, G. L. Bona, Appl. Phys. Lett. 56, 2291 (1990).
[CrossRef]

Masuda, H.

R. C. Eckardt, H. Masuda, Y. X. Fan, R. L. Byer, IEEE J. Quantum Electron. 26, 922 (1990).
[CrossRef]

Mlynek, J.

R. Paschotta, K. Fiedler, P. Kürz, J. Mlynek, Appl. Phys. B 58, 117 (1994). Note that the final result for the parameter κ of the standing-wave resonator, given in Eq. (11), is too small by a factor of 2 The same applies to the values given in the figure captions.
[CrossRef]

R. Paschotta, M. Collett, P. Kürz, K. Fiedler, J. Mlynek, Phys. Rev. Lett. 72, 3807 (1994).
[CrossRef] [PubMed]

K. Fiedler, S. Schiller, R. Paschotta, P. Kürtz, J. Mlynek, Opt. Lett. 18, 1786 (1993).
[CrossRef] [PubMed]

Moser, A.

W. J. Kozlovsky, W. Lenth, E. E. Latta, A. Moser, G. L. Bona, Appl. Phys. Lett. 56, 2291 (1990).
[CrossRef]

Nabors, C. D.

W. J. Kozlovsky, C. D. Nabors, R. L. Byer, IEEE J. Quantum Electron. 24, 913 (1988).
[CrossRef]

W. J. Kozlovsky, C. D. Nabors, R. L. Byer, Appl. Opt. 12, 1014 (1987).

Norwood, R. G.

Ou, Z. Y.

Paschotta, R.

R. Paschotta, K. Fiedler, P. Kürz, J. Mlynek, Appl. Phys. B 58, 117 (1994). Note that the final result for the parameter κ of the standing-wave resonator, given in Eq. (11), is too small by a factor of 2 The same applies to the values given in the figure captions.
[CrossRef]

R. Paschotta, M. Collett, P. Kürz, K. Fiedler, J. Mlynek, Phys. Rev. Lett. 72, 3807 (1994).
[CrossRef] [PubMed]

K. Fiedler, S. Schiller, R. Paschotta, P. Kürtz, J. Mlynek, Opt. Lett. 18, 1786 (1993).
[CrossRef] [PubMed]

Pereira, S. F.

Plzik, E. S.

Pohalski, C. C.

Raymakers, R. J.

Route, R. K.

Schiller, S.

Tye, G. E.

Wallace, R. W.

Wu, L.-A.

A similar result is discussed inL.-A. Wu, H. J. Kimble, J. Opt. Soc. Am. B 2, 698 (1985).
[CrossRef]

Yang, S. T.

Appl. Opt. (1)

W. J. Kozlovsky, C. D. Nabors, R. L. Byer, Appl. Opt. 12, 1014 (1987).

Appl. Phys. B (1)

R. Paschotta, K. Fiedler, P. Kürz, J. Mlynek, Appl. Phys. B 58, 117 (1994). Note that the final result for the parameter κ of the standing-wave resonator, given in Eq. (11), is too small by a factor of 2 The same applies to the values given in the figure captions.
[CrossRef]

Appl. Phys. Lett. (1)

W. J. Kozlovsky, W. Lenth, E. E. Latta, A. Moser, G. L. Bona, Appl. Phys. Lett. 56, 2291 (1990).
[CrossRef]

IEEE J. Quantum Electron. (3)

W. J. Kozlovsky, C. D. Nabors, R. L. Byer, IEEE J. Quantum Electron. 24, 913 (1988).
[CrossRef]

R. C. Eckardt, H. Masuda, Y. X. Fan, R. L. Byer, IEEE J. Quantum Electron. 26, 922 (1990).
[CrossRef]

A. Ashkin, G. D. Boyd, J. M. Dziedzic, IEEE J. Quantum Electron. QE-2, 109 (1966).
[CrossRef]

J. Appl. Phys. (1)

G. D. Boyd, D. A. Kleinman, J. Appl. Phys. 39, 3597 (1968).
[CrossRef]

J. Opt. Soc. Am. B (1)

A similar result is discussed inL.-A. Wu, H. J. Kimble, J. Opt. Soc. Am. B 2, 698 (1985).
[CrossRef]

Opt. Lett. (6)

Phys. Rev. Lett. (1)

R. Paschotta, M. Collett, P. Kürz, K. Fiedler, J. Mlynek, Phys. Rev. Lett. 72, 3807 (1994).
[CrossRef] [PubMed]

Other (1)

Our material was bought from Crystal Technology, Palo Alto, Calif.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Conversion factor γSHG at optimum temperature for our geometry as a function of the relative phase shift Δφ at the high reflector (solid curve). The dashed line refers to a resonator in which both mirrors transmit the second-harmonic light. The insets show the phase-matching curves (γSHG as a function of the phase mismatch σ) at Δφ = 90° (left) and Δφ = 225° (right).

Fig. 2
Fig. 2

Conversion efficiency as a function of the IR input power. The solid curve refers to the plan for our resonator. The dashed curve shows the efficiency with the input coupler optimized at any input power. For comparison, the dotted curve shows the calculated efficiency of a doubly resonant frequency doubler.

Fig. 3
Fig. 3

Experimental setup. The laser beam is mode matched to the frequency doubler mounted in the oven. The Faraday isolator (FI) protects the laser against back-reflected light. M is a dichroic mirror, highly reflective at 532 nm. Polarizer P eliminates residual pump light. The laser frequency is locked to the fundamental wave resonance with the lock-in feedback system.

Fig. 4
Fig. 4

Filled circles, measured second-harmonic output power as a function of the IR input power; rectangles, conversion efficiency, calculated from the same data. The solid curves result from a fit for the nonlinearity.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

P 2 = γ SHG P 1 c 2 ,
γ SHG = Γ L h ( σ , ξ ) × 1 + exp [ i ( 2 σ ξ - 2 arctan z ξ + Δ φ ) ] 2 ,
T opt = a + γ SHG P 1 c ,
η = P 2 P 1 = ( 1 + p ˜ - 1 ) 2 p ˜             with             p ˜ = 4 γ SHG a 2 P 1 .

Metrics