Abstract

Cancellation of waves generated by four-wave mixing (FWM) in a single-mode fiber by use of midway optical phase conjugation is proposed and analyzed, and the possible power reduction is estimated. Effective cancellation of FWM is demonstrated with phase-conjugate waves generated by forward FWM in a zero-dispersion single-mode fiber, and a power reduction ratio of −13.9 dB is achieved in experimental three-channel transmission along a 40-km dispersion-shifted fiber.

© 1994 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Yariv, IEEE J. Quantum Electron. QE-14, 650 (1978).
    [CrossRef]
  2. K. Inoue, J. Lightwave Technol. 10, 1553 (1992).
    [CrossRef]
  3. S. Watanabe, T. Naito, T. Chikama, IEEE Photon. Tehnol. Lett. 5, 92 (1993).
    [CrossRef]
  4. D. M. Pepper, A. Yariv, Opt. Lett. 5, 59 (1980).
    [CrossRef] [PubMed]
  5. S. Watanabe, T. Chikama, G. Ishikawa, T. Terahara, H. Kuwahara, IEEE Photon. Technol. Lett. 5, 1241 (1993).
    [CrossRef]
  6. S. Ogita, Y. Kotaki, M. Matsuda, Y. Kuwahara, H. Onaka, H. Miyata, H. Ishikawa, IEEE Photon. Technol. Lett. 2, 165 (1990).
    [CrossRef]
  7. S. Watanabe, T. Chikama, Electron. Lett. 30, 163 (1994).
    [CrossRef]
  8. D. Cotter, J. Opt. Commun. 4, 10 (1983).
    [CrossRef]

1994 (1)

S. Watanabe, T. Chikama, Electron. Lett. 30, 163 (1994).
[CrossRef]

1993 (2)

S. Watanabe, T. Chikama, G. Ishikawa, T. Terahara, H. Kuwahara, IEEE Photon. Technol. Lett. 5, 1241 (1993).
[CrossRef]

S. Watanabe, T. Naito, T. Chikama, IEEE Photon. Tehnol. Lett. 5, 92 (1993).
[CrossRef]

1992 (1)

K. Inoue, J. Lightwave Technol. 10, 1553 (1992).
[CrossRef]

1990 (1)

S. Ogita, Y. Kotaki, M. Matsuda, Y. Kuwahara, H. Onaka, H. Miyata, H. Ishikawa, IEEE Photon. Technol. Lett. 2, 165 (1990).
[CrossRef]

1983 (1)

D. Cotter, J. Opt. Commun. 4, 10 (1983).
[CrossRef]

1980 (1)

1978 (1)

A. Yariv, IEEE J. Quantum Electron. QE-14, 650 (1978).
[CrossRef]

Chikama, T.

S. Watanabe, T. Chikama, Electron. Lett. 30, 163 (1994).
[CrossRef]

S. Watanabe, T. Chikama, G. Ishikawa, T. Terahara, H. Kuwahara, IEEE Photon. Technol. Lett. 5, 1241 (1993).
[CrossRef]

S. Watanabe, T. Naito, T. Chikama, IEEE Photon. Tehnol. Lett. 5, 92 (1993).
[CrossRef]

Cotter, D.

D. Cotter, J. Opt. Commun. 4, 10 (1983).
[CrossRef]

Inoue, K.

K. Inoue, J. Lightwave Technol. 10, 1553 (1992).
[CrossRef]

Ishikawa, G.

S. Watanabe, T. Chikama, G. Ishikawa, T. Terahara, H. Kuwahara, IEEE Photon. Technol. Lett. 5, 1241 (1993).
[CrossRef]

Ishikawa, H.

S. Ogita, Y. Kotaki, M. Matsuda, Y. Kuwahara, H. Onaka, H. Miyata, H. Ishikawa, IEEE Photon. Technol. Lett. 2, 165 (1990).
[CrossRef]

Kotaki, Y.

S. Ogita, Y. Kotaki, M. Matsuda, Y. Kuwahara, H. Onaka, H. Miyata, H. Ishikawa, IEEE Photon. Technol. Lett. 2, 165 (1990).
[CrossRef]

Kuwahara, H.

S. Watanabe, T. Chikama, G. Ishikawa, T. Terahara, H. Kuwahara, IEEE Photon. Technol. Lett. 5, 1241 (1993).
[CrossRef]

Kuwahara, Y.

S. Ogita, Y. Kotaki, M. Matsuda, Y. Kuwahara, H. Onaka, H. Miyata, H. Ishikawa, IEEE Photon. Technol. Lett. 2, 165 (1990).
[CrossRef]

Matsuda, M.

S. Ogita, Y. Kotaki, M. Matsuda, Y. Kuwahara, H. Onaka, H. Miyata, H. Ishikawa, IEEE Photon. Technol. Lett. 2, 165 (1990).
[CrossRef]

Miyata, H.

S. Ogita, Y. Kotaki, M. Matsuda, Y. Kuwahara, H. Onaka, H. Miyata, H. Ishikawa, IEEE Photon. Technol. Lett. 2, 165 (1990).
[CrossRef]

Naito, T.

S. Watanabe, T. Naito, T. Chikama, IEEE Photon. Tehnol. Lett. 5, 92 (1993).
[CrossRef]

Ogita, S.

S. Ogita, Y. Kotaki, M. Matsuda, Y. Kuwahara, H. Onaka, H. Miyata, H. Ishikawa, IEEE Photon. Technol. Lett. 2, 165 (1990).
[CrossRef]

Onaka, H.

S. Ogita, Y. Kotaki, M. Matsuda, Y. Kuwahara, H. Onaka, H. Miyata, H. Ishikawa, IEEE Photon. Technol. Lett. 2, 165 (1990).
[CrossRef]

Pepper, D. M.

Terahara, T.

S. Watanabe, T. Chikama, G. Ishikawa, T. Terahara, H. Kuwahara, IEEE Photon. Technol. Lett. 5, 1241 (1993).
[CrossRef]

Watanabe, S.

S. Watanabe, T. Chikama, Electron. Lett. 30, 163 (1994).
[CrossRef]

S. Watanabe, T. Chikama, G. Ishikawa, T. Terahara, H. Kuwahara, IEEE Photon. Technol. Lett. 5, 1241 (1993).
[CrossRef]

S. Watanabe, T. Naito, T. Chikama, IEEE Photon. Tehnol. Lett. 5, 92 (1993).
[CrossRef]

Yariv, A.

D. M. Pepper, A. Yariv, Opt. Lett. 5, 59 (1980).
[CrossRef] [PubMed]

A. Yariv, IEEE J. Quantum Electron. QE-14, 650 (1978).
[CrossRef]

Electron. Lett. (1)

S. Watanabe, T. Chikama, Electron. Lett. 30, 163 (1994).
[CrossRef]

IEEE J. Quantum Electron (1)

A. Yariv, IEEE J. Quantum Electron. QE-14, 650 (1978).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

S. Watanabe, T. Chikama, G. Ishikawa, T. Terahara, H. Kuwahara, IEEE Photon. Technol. Lett. 5, 1241 (1993).
[CrossRef]

S. Ogita, Y. Kotaki, M. Matsuda, Y. Kuwahara, H. Onaka, H. Miyata, H. Ishikawa, IEEE Photon. Technol. Lett. 2, 165 (1990).
[CrossRef]

IEEE Photon. Tehnol. Lett. (1)

S. Watanabe, T. Naito, T. Chikama, IEEE Photon. Tehnol. Lett. 5, 92 (1993).
[CrossRef]

J. Lightwave Technol. (1)

K. Inoue, J. Lightwave Technol. 10, 1553 (1992).
[CrossRef]

J. Opt. Commun. (1)

D. Cotter, J. Opt. Commun. 4, 10 (1983).
[CrossRef]

Opt. Lett. (1)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic diagram of FWM cancellation with an OPC.

Fig. 2
Fig. 2

Power reduction ratio dependence on the nonlinear coupling parameter r in SMF’s when two SMF’s are the same.

Fig. 3
Fig. 3

Experimental setup. The light sources are three-electrode λ/4-shifted distributed-feedback laser diodes with spectral linewidths of ~1.5 MHz. OF, optical bandpass filter for selecting phase-conjugate waves. In measuring |B|2, OPC is replaced by EDFA.

Fig. 4
Fig. 4

Experimental (filled circles) power ratio dependence of the third channel output from SMF2 on P2′/P2 for P2 = 9.1 mW and P1 = 3.2 mW, together with the theoretical curves of the power reduction ratio as a function of P2′/P2.

Fig. 5
Fig. 5

Output spectra from SMF2 for P2′ = P2: (a) without OPC, (b) with OPC. The baseline in (b) indicates the amplified spontaneous emission noise level from EDFA in the phase conjugator. The resolution is 0.1 nm.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

E C 3 ( L 1 + L 2 ) = exp [ - ( α 1 L 1 + α 2 L 2 ) / 2 ] × G 1 / 2 A ( r 1 , r 2 ) E P 1 ( 0 ) ,
A ( r 1 , r 2 ) = exp [ - i ( r 1 - r 2 ) ] ( - i r 1 ) ( 1 + i r 2 ) + exp [ i ( r 1 + r 2 ) ] ( 1 + i r 1 ) ( i r 2 ) ,
E P 3 ( L 1 + L 2 ) = exp [ - ( α 1 L 1 + α 2 L 2 ) / 2 ] × G 1 / 2 B ( r 1 , r 2 ) E P 1 * ( 0 ) ,
B ( r 1 , r 2 ) = exp [ i ( r 1 + r 2 ) ] ( i r 1 ) ( 1 + i r 2 ) + exp [ - i ( r 1 - r 2 ) ] ( 1 - i r 1 ) ( i r 2 ) .

Metrics