Abstract

Sr0.59Ba0.41Nb2O6 and Sr0.75Ba0.25 Nb2O6 exhibit an intensity-dependent absorption in the visible spectral range. We perform pump (green)–probe (red) measurements and find variation as high as 0.45 cm−1 in the absorption coefficient, which depends significantly on the polarization of the probe light beam. Our results indicate a nonexponential dark decay time of the induced absorption and suggest that the trapping potential of the shallow traps varies significantly from one trap to another (multiple isolated shallow traps).

© 1994 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. R. Neurgaonkar, W. K. Cory, J. Opt. Soc. Am. B 3, 274 (1986).
    [CrossRef]
  2. N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, V. L. Vinetskii, Ferroelectrics 22, 949 (1979).
    [CrossRef]
  3. A. Motes, J. J. Kim, J. Opt. Soc. Am. B 4, 1379 (1987).
    [CrossRef]
  4. G. A. Brost, R. A. Motes, J. R. Rotge, J. Opt. Soc. Am. B 5, 1879 (1988).
    [CrossRef]
  5. L. Holtmann, Phys. Status Solidi A 113, K89 (1989).
    [CrossRef]
  6. D. Mahgerefteh, J. Feinberg, Phys. Rev. Lett. 64, 2195 (1990); P. Tayebati, D. Mahgerefteh, J. Opt. Soc. Am. B 8, 1053 (1991).
    [CrossRef] [PubMed]
  7. S. A. Holmstrom, B. Taheri, R. J. Reeves, in Digest of Topical Meeting on Photorefractive Materials, Effects and Devices (Optical Society of America, Washington, D.C., 1993), p. 255.
  8. This assumption is equivalent to assuming that the shallow traps occupy a single level and is valid for SBN:60 but, as shown below, is not valid for SBN:75.
  9. L. Holtmann, K. Buse, G. Kuper, A. Groll, E. Krätzig, Appl. Phys. A 53, 81 (1991).
    [CrossRef]
  10. After this Letter was submitted, a similar observation that indicated an identical ratio between light-induced absorption coefficients of extraordinarily and ordinarily polarized light in SBN:60:Ce was reported byK. Buse, R. Pankrath, E. Krätzig, Opt. Lett. 19, 260 (1994).
    [CrossRef] [PubMed]
  11. M. Horowitz, R. Daisy, O. Werner, B. Fisher, Opt. Lett. 17, 475 (1992).
    [CrossRef] [PubMed]
  12. H. Mabuchi, E. S. Polzik, H. J. Kimble, “Blue-light-induced infrared absorption in KNbO3” J. Opt. Soc. Am. B (to be published).
  13. R. Street, J. C. Wooley, Proc. Phys. Soc. A 62, 562 (1949).
    [CrossRef]

1994 (1)

1992 (1)

1991 (1)

L. Holtmann, K. Buse, G. Kuper, A. Groll, E. Krätzig, Appl. Phys. A 53, 81 (1991).
[CrossRef]

1990 (1)

D. Mahgerefteh, J. Feinberg, Phys. Rev. Lett. 64, 2195 (1990); P. Tayebati, D. Mahgerefteh, J. Opt. Soc. Am. B 8, 1053 (1991).
[CrossRef] [PubMed]

1989 (1)

L. Holtmann, Phys. Status Solidi A 113, K89 (1989).
[CrossRef]

1988 (1)

1987 (1)

1986 (1)

1979 (1)

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, V. L. Vinetskii, Ferroelectrics 22, 949 (1979).
[CrossRef]

1949 (1)

R. Street, J. C. Wooley, Proc. Phys. Soc. A 62, 562 (1949).
[CrossRef]

Brost, G. A.

Buse, K.

Cory, W. K.

Daisy, R.

Feinberg, J.

D. Mahgerefteh, J. Feinberg, Phys. Rev. Lett. 64, 2195 (1990); P. Tayebati, D. Mahgerefteh, J. Opt. Soc. Am. B 8, 1053 (1991).
[CrossRef] [PubMed]

Fisher, B.

Groll, A.

L. Holtmann, K. Buse, G. Kuper, A. Groll, E. Krätzig, Appl. Phys. A 53, 81 (1991).
[CrossRef]

Holmstrom, S. A.

S. A. Holmstrom, B. Taheri, R. J. Reeves, in Digest of Topical Meeting on Photorefractive Materials, Effects and Devices (Optical Society of America, Washington, D.C., 1993), p. 255.

Holtmann, L.

L. Holtmann, K. Buse, G. Kuper, A. Groll, E. Krätzig, Appl. Phys. A 53, 81 (1991).
[CrossRef]

L. Holtmann, Phys. Status Solidi A 113, K89 (1989).
[CrossRef]

Horowitz, M.

Kim, J. J.

Kimble, H. J.

H. Mabuchi, E. S. Polzik, H. J. Kimble, “Blue-light-induced infrared absorption in KNbO3” J. Opt. Soc. Am. B (to be published).

Krätzig, E.

Kukhtarev, N. V.

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, V. L. Vinetskii, Ferroelectrics 22, 949 (1979).
[CrossRef]

Kuper, G.

L. Holtmann, K. Buse, G. Kuper, A. Groll, E. Krätzig, Appl. Phys. A 53, 81 (1991).
[CrossRef]

Mabuchi, H.

H. Mabuchi, E. S. Polzik, H. J. Kimble, “Blue-light-induced infrared absorption in KNbO3” J. Opt. Soc. Am. B (to be published).

Mahgerefteh, D.

D. Mahgerefteh, J. Feinberg, Phys. Rev. Lett. 64, 2195 (1990); P. Tayebati, D. Mahgerefteh, J. Opt. Soc. Am. B 8, 1053 (1991).
[CrossRef] [PubMed]

Markov, V. B.

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, V. L. Vinetskii, Ferroelectrics 22, 949 (1979).
[CrossRef]

Motes, A.

Motes, R. A.

Neurgaonkar, R. R.

Odulov, S. G.

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, V. L. Vinetskii, Ferroelectrics 22, 949 (1979).
[CrossRef]

Pankrath, R.

Polzik, E. S.

H. Mabuchi, E. S. Polzik, H. J. Kimble, “Blue-light-induced infrared absorption in KNbO3” J. Opt. Soc. Am. B (to be published).

Reeves, R. J.

S. A. Holmstrom, B. Taheri, R. J. Reeves, in Digest of Topical Meeting on Photorefractive Materials, Effects and Devices (Optical Society of America, Washington, D.C., 1993), p. 255.

Rotge, J. R.

Soskin, M. S.

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, V. L. Vinetskii, Ferroelectrics 22, 949 (1979).
[CrossRef]

Street, R.

R. Street, J. C. Wooley, Proc. Phys. Soc. A 62, 562 (1949).
[CrossRef]

Taheri, B.

S. A. Holmstrom, B. Taheri, R. J. Reeves, in Digest of Topical Meeting on Photorefractive Materials, Effects and Devices (Optical Society of America, Washington, D.C., 1993), p. 255.

Vinetskii, V. L.

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, V. L. Vinetskii, Ferroelectrics 22, 949 (1979).
[CrossRef]

Werner, O.

Wooley, J. C.

R. Street, J. C. Wooley, Proc. Phys. Soc. A 62, 562 (1949).
[CrossRef]

Appl. Phys. A (1)

L. Holtmann, K. Buse, G. Kuper, A. Groll, E. Krätzig, Appl. Phys. A 53, 81 (1991).
[CrossRef]

Ferroelectrics (1)

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, V. L. Vinetskii, Ferroelectrics 22, 949 (1979).
[CrossRef]

J. Opt. Soc. Am. B (3)

Opt. Lett. (2)

Phys. Rev. Lett. (1)

D. Mahgerefteh, J. Feinberg, Phys. Rev. Lett. 64, 2195 (1990); P. Tayebati, D. Mahgerefteh, J. Opt. Soc. Am. B 8, 1053 (1991).
[CrossRef] [PubMed]

Phys. Status Solidi A (1)

L. Holtmann, Phys. Status Solidi A 113, K89 (1989).
[CrossRef]

Proc. Phys. Soc. A (1)

R. Street, J. C. Wooley, Proc. Phys. Soc. A 62, 562 (1949).
[CrossRef]

Other (3)

S. A. Holmstrom, B. Taheri, R. J. Reeves, in Digest of Topical Meeting on Photorefractive Materials, Effects and Devices (Optical Society of America, Washington, D.C., 1993), p. 255.

This assumption is equivalent to assuming that the shallow traps occupy a single level and is valid for SBN:60 but, as shown below, is not valid for SBN:75.

H. Mabuchi, E. S. Polzik, H. J. Kimble, “Blue-light-induced infrared absorption in KNbO3” J. Opt. Soc. Am. B (to be published).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Experimental setup: L’s, lenses; λ/2’s, half-wave plates; PRC, photorefractive crystal; D, photodetector.

Fig. 2
Fig. 2

Light-induced absorption coefficient at λ = 633 nm versus the intensity of the pump beam (λ= 488 nm) in SBN:60:Cr. R (red) and G (green) denote the polarizations of the probe and the pump, respectively. The linear absorption of the probe beam is α|| = 0.4 cm−1 for extraordinary polarization and α = 0.7−1 cm for ordinary polarization.

Fig. 3
Fig. 3

Buildup rate of the induced absorption at λ = 633 nm versus the intensity of the pump beam (λ = 488 nm) in SBN:75:Cr.

Fig. 4
Fig. 4

Light-induced absorption coefficient at λ = 633 nm versus the intensity of the pump beam (λ = 488 nm) in SBN:75:Ce. The probe beam is ordinarily polarized in both cases, and its linear absorption coefficient is 0.6 cm−1.

Fig. 5
Fig. 5

Buildup rate of the induced absorption at λ = 633 nm versus the intensity of the pump beam (λ = 488 nm) in SBN:75:Ce. The probe beam is ordinarily polarized in both cases.

Fig. 6
Fig. 6

Nonexponential dark decay of the induced absorption in SBN:75:Ce, after an initial 200-ms pump light pulse. The vertical axis corresponds to the induced absorption (0.025 cm−1/division), and the horizontal scale is 5 s/division.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

I S ( with I P on ) I S ( with I P off ) = exp ( - α I d ) ,
1 τ = β 2 + s 2 I + γ 2 n ,

Metrics