Abstract

A new technique for the fabrication of freestanding poled polymer films that uses a metallic film as the lifting-off layer is reported. This technique is used to make low-transmission-loss bulk periodic synthetic-crystals structures that satisfy a quasi-phase-matching condition for second-harmonic generation. Efficiency of the order of 10−2% is obtained for a thickness of 150 μm. The theoretical basis for determining the optimum phase-matching angle to maximize the second-harmonic conversion efficiency is discussed.

© 1994 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. Uesugi, K. Dakoku, K. Kubota, Appl. Phys. Lett. 34, 60 (1979).
    [CrossRef]
  2. H. Itoh, K. Hotta, H. Takara, K. Sasaki, Appl. Opt. 25, 1491 (1986).
    [CrossRef] [PubMed]
  3. R. A. Norwood, G. Khanarian, Electron. Lett. 26, 405 (1990).
    [CrossRef]
  4. P. K. Tien, R. Ullrich, R. J. Martin, Appl. Phys. Lett. 17, 447 (1970).
    [CrossRef]
  5. G. Khanarian, M. A. Mortazavi, A. J. East, Appl. Phys. Lett. 63, 1464 (1993).
    [CrossRef]
  6. J. Jerphagnon, S. K. Kurtz, J. Appl. Phys. 41, 1667 (1970).
    [CrossRef]
  7. K. D. Singer, J. E. Sohn, S. J. Lalama, Appl. Phys. Lett. 49, 248 (1986).
    [CrossRef]
  8. D. Yankelvich, A. Dienes, A. Knoesen, R. W. Schoenlein, C. V. Shank, IEEE J. Quantum Electron. 28, 2398 (1992).
    [CrossRef]
  9. M. A. Mortazavi, D. Yankelvich, A. Dienes, A. Knoesen, S. T. Kowel, S. Dijali, Appl. Opt. 28, 3278 (1989).
    [CrossRef] [PubMed]

1993 (1)

G. Khanarian, M. A. Mortazavi, A. J. East, Appl. Phys. Lett. 63, 1464 (1993).
[CrossRef]

1992 (1)

D. Yankelvich, A. Dienes, A. Knoesen, R. W. Schoenlein, C. V. Shank, IEEE J. Quantum Electron. 28, 2398 (1992).
[CrossRef]

1990 (1)

R. A. Norwood, G. Khanarian, Electron. Lett. 26, 405 (1990).
[CrossRef]

1989 (1)

1986 (2)

H. Itoh, K. Hotta, H. Takara, K. Sasaki, Appl. Opt. 25, 1491 (1986).
[CrossRef] [PubMed]

K. D. Singer, J. E. Sohn, S. J. Lalama, Appl. Phys. Lett. 49, 248 (1986).
[CrossRef]

1979 (1)

N. Uesugi, K. Dakoku, K. Kubota, Appl. Phys. Lett. 34, 60 (1979).
[CrossRef]

1970 (2)

P. K. Tien, R. Ullrich, R. J. Martin, Appl. Phys. Lett. 17, 447 (1970).
[CrossRef]

J. Jerphagnon, S. K. Kurtz, J. Appl. Phys. 41, 1667 (1970).
[CrossRef]

Dakoku, K.

N. Uesugi, K. Dakoku, K. Kubota, Appl. Phys. Lett. 34, 60 (1979).
[CrossRef]

Dienes, A.

D. Yankelvich, A. Dienes, A. Knoesen, R. W. Schoenlein, C. V. Shank, IEEE J. Quantum Electron. 28, 2398 (1992).
[CrossRef]

M. A. Mortazavi, D. Yankelvich, A. Dienes, A. Knoesen, S. T. Kowel, S. Dijali, Appl. Opt. 28, 3278 (1989).
[CrossRef] [PubMed]

Dijali, S.

East, A. J.

G. Khanarian, M. A. Mortazavi, A. J. East, Appl. Phys. Lett. 63, 1464 (1993).
[CrossRef]

Hotta, K.

Itoh, H.

Jerphagnon, J.

J. Jerphagnon, S. K. Kurtz, J. Appl. Phys. 41, 1667 (1970).
[CrossRef]

Khanarian, G.

G. Khanarian, M. A. Mortazavi, A. J. East, Appl. Phys. Lett. 63, 1464 (1993).
[CrossRef]

R. A. Norwood, G. Khanarian, Electron. Lett. 26, 405 (1990).
[CrossRef]

Knoesen, A.

D. Yankelvich, A. Dienes, A. Knoesen, R. W. Schoenlein, C. V. Shank, IEEE J. Quantum Electron. 28, 2398 (1992).
[CrossRef]

M. A. Mortazavi, D. Yankelvich, A. Dienes, A. Knoesen, S. T. Kowel, S. Dijali, Appl. Opt. 28, 3278 (1989).
[CrossRef] [PubMed]

Kowel, S. T.

Kubota, K.

N. Uesugi, K. Dakoku, K. Kubota, Appl. Phys. Lett. 34, 60 (1979).
[CrossRef]

Kurtz, S. K.

J. Jerphagnon, S. K. Kurtz, J. Appl. Phys. 41, 1667 (1970).
[CrossRef]

Lalama, S. J.

K. D. Singer, J. E. Sohn, S. J. Lalama, Appl. Phys. Lett. 49, 248 (1986).
[CrossRef]

Martin, R. J.

P. K. Tien, R. Ullrich, R. J. Martin, Appl. Phys. Lett. 17, 447 (1970).
[CrossRef]

Mortazavi, M. A.

Norwood, R. A.

R. A. Norwood, G. Khanarian, Electron. Lett. 26, 405 (1990).
[CrossRef]

Sasaki, K.

Schoenlein, R. W.

D. Yankelvich, A. Dienes, A. Knoesen, R. W. Schoenlein, C. V. Shank, IEEE J. Quantum Electron. 28, 2398 (1992).
[CrossRef]

Shank, C. V.

D. Yankelvich, A. Dienes, A. Knoesen, R. W. Schoenlein, C. V. Shank, IEEE J. Quantum Electron. 28, 2398 (1992).
[CrossRef]

Singer, K. D.

K. D. Singer, J. E. Sohn, S. J. Lalama, Appl. Phys. Lett. 49, 248 (1986).
[CrossRef]

Sohn, J. E.

K. D. Singer, J. E. Sohn, S. J. Lalama, Appl. Phys. Lett. 49, 248 (1986).
[CrossRef]

Takara, H.

Tien, P. K.

P. K. Tien, R. Ullrich, R. J. Martin, Appl. Phys. Lett. 17, 447 (1970).
[CrossRef]

Uesugi, N.

N. Uesugi, K. Dakoku, K. Kubota, Appl. Phys. Lett. 34, 60 (1979).
[CrossRef]

Ullrich, R.

P. K. Tien, R. Ullrich, R. J. Martin, Appl. Phys. Lett. 17, 447 (1970).
[CrossRef]

Yankelvich, D.

D. Yankelvich, A. Dienes, A. Knoesen, R. W. Schoenlein, C. V. Shank, IEEE J. Quantum Electron. 28, 2398 (1992).
[CrossRef]

M. A. Mortazavi, D. Yankelvich, A. Dienes, A. Knoesen, S. T. Kowel, S. Dijali, Appl. Opt. 28, 3278 (1989).
[CrossRef] [PubMed]

Appl. Opt. (2)

Appl. Phys. Lett. (4)

N. Uesugi, K. Dakoku, K. Kubota, Appl. Phys. Lett. 34, 60 (1979).
[CrossRef]

K. D. Singer, J. E. Sohn, S. J. Lalama, Appl. Phys. Lett. 49, 248 (1986).
[CrossRef]

P. K. Tien, R. Ullrich, R. J. Martin, Appl. Phys. Lett. 17, 447 (1970).
[CrossRef]

G. Khanarian, M. A. Mortazavi, A. J. East, Appl. Phys. Lett. 63, 1464 (1993).
[CrossRef]

Electron. Lett. (1)

R. A. Norwood, G. Khanarian, Electron. Lett. 26, 405 (1990).
[CrossRef]

IEEE J. Quantum Electron. (1)

D. Yankelvich, A. Dienes, A. Knoesen, R. W. Schoenlein, C. V. Shank, IEEE J. Quantum Electron. 28, 2398 (1992).
[CrossRef]

J. Appl. Phys. (1)

J. Jerphagnon, S. K. Kurtz, J. Appl. Phys. 41, 1667 (1970).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Angular dependence of the single-layer film thickness (–) and the parameter p(θ)2[tω (θ)]4T2ω (θ)(L)2 (- -).

Fig. 2
Fig. 2

Optical transmission versus film thickness.

Fig. 3
Fig. 3

SH conversion efficiency as a function of input optical power density.

Fig. 4
Fig. 4

SH intensity as a function of film thickness.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

P 2 ω = 128 π 5 ( 2 / π ) 2 ( χ 2 ) 2 ( P ω ) 2 L 2 exp [ - ( α ω + α 2 ω / 2 ) L ] ( n ω ) 2 n 2 ω λ 2 c A × t ω ( θ ) 4 T 2 ω ( θ ) p ( θ ) 2 .
t ω ( θ ) = 2 cos θ ( n ω cos θ + cos θ ω ) ,
T 2 ω ( θ ) = 2 n 2 ω cos θ 2 ω ( n ω cos θ + cos θ ω ) ( n 2 ω cos θ ω + n ω cos θ 2 ω ) ( n 2 ω cos θ 2 ω + cos θ ) 3 ,
p ( θ ) = 2 / 3 cos θ ω sin θ ω cos θ 2 ω + sin θ 2 ω [ 1 / 3 ( cos θ ω ) 2 + ( sin θ ω ) 2 ] ,

Metrics