Abstract

The polarization properties of backward-box, degenerate four-wave mixing from OH molecules are measured in a flame and compared with theory. Ratios of signal intensities for different laser polarizations are shown to exceed perturbation-theory predictions for a closed two-level system when optical intensity gratings are formed in the interaction volume. These results are shown to be inconsistent with population-nonconserving effects and are attributed to scattering from quenching-induced thermal density gratings.

© 1994 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. L. Farrow, D. J. Rakestraw, Science 257, 1894 (1992).
    [CrossRef] [PubMed]
  2. J. F. Lam, R. L. Abrams, Phys. Rev. A 26, 1539 (1982).
    [CrossRef]
  3. D. G. Steel, J. T. Remillard, Phys. Rev. A 36, 4330 (1987).
    [CrossRef] [PubMed]
  4. H. J. Eichler, P. Günter, D. W. Pohl, Laser-Induced Dynamic Gratings, T. Tamir, ed., Vol. 50 of Springer Series in Optical Sciences (Springer-Verlag, New York, 1986).
  5. M. Ducloy, D. Bloch, Phys. Rev. A 30, 3107 (1984).
    [CrossRef]
  6. R. L. Abrams, J. F. Lam, R. C. Lind, D. G. Steel, P. F. Liao, in Optical Phase Conjugation, R. A. Fisher, ed. (Academic, New York, 1983), p. 211.
  7. M. S. Brown, L. A. Rahn, T. Dreier, Opt. Lett. 17, 76 (1992).
    [CrossRef] [PubMed]
  8. A. C. Eckbreth, Appl. Phys. Lett. 32, 421 (1978).
    [CrossRef]
  9. S. A. J. Druet, J.-P. E. Taran, Prog. Quantum Electron. 7, 1 (1981).
    [CrossRef]
  10. B. Attal-Trétout, P. Monot, Mol. Phys. 73, 1257 (1991).
    [CrossRef]
  11. I. Aben, W. Ubachs, G. Van der Zwan, W. Hogervorst, Mol. Phys. 76, 591 (1992).
    [CrossRef]
  12. D. Bloch, M. Ducloy, J. Phys. B 14, L471 (1981).
    [CrossRef]
  13. E. J. Friedman-Hill, L. A. Rahn, R. L. Farrow, J. Chem. Phys. 100, 4065 (1994).
    [CrossRef]

1994 (1)

E. J. Friedman-Hill, L. A. Rahn, R. L. Farrow, J. Chem. Phys. 100, 4065 (1994).
[CrossRef]

1992 (3)

M. S. Brown, L. A. Rahn, T. Dreier, Opt. Lett. 17, 76 (1992).
[CrossRef] [PubMed]

R. L. Farrow, D. J. Rakestraw, Science 257, 1894 (1992).
[CrossRef] [PubMed]

I. Aben, W. Ubachs, G. Van der Zwan, W. Hogervorst, Mol. Phys. 76, 591 (1992).
[CrossRef]

1991 (1)

B. Attal-Trétout, P. Monot, Mol. Phys. 73, 1257 (1991).
[CrossRef]

1987 (1)

D. G. Steel, J. T. Remillard, Phys. Rev. A 36, 4330 (1987).
[CrossRef] [PubMed]

1984 (1)

M. Ducloy, D. Bloch, Phys. Rev. A 30, 3107 (1984).
[CrossRef]

1982 (1)

J. F. Lam, R. L. Abrams, Phys. Rev. A 26, 1539 (1982).
[CrossRef]

1981 (2)

S. A. J. Druet, J.-P. E. Taran, Prog. Quantum Electron. 7, 1 (1981).
[CrossRef]

D. Bloch, M. Ducloy, J. Phys. B 14, L471 (1981).
[CrossRef]

1978 (1)

A. C. Eckbreth, Appl. Phys. Lett. 32, 421 (1978).
[CrossRef]

Aben, I.

I. Aben, W. Ubachs, G. Van der Zwan, W. Hogervorst, Mol. Phys. 76, 591 (1992).
[CrossRef]

Abrams, R. L.

J. F. Lam, R. L. Abrams, Phys. Rev. A 26, 1539 (1982).
[CrossRef]

R. L. Abrams, J. F. Lam, R. C. Lind, D. G. Steel, P. F. Liao, in Optical Phase Conjugation, R. A. Fisher, ed. (Academic, New York, 1983), p. 211.

Attal-Trétout, B.

B. Attal-Trétout, P. Monot, Mol. Phys. 73, 1257 (1991).
[CrossRef]

Bloch, D.

M. Ducloy, D. Bloch, Phys. Rev. A 30, 3107 (1984).
[CrossRef]

D. Bloch, M. Ducloy, J. Phys. B 14, L471 (1981).
[CrossRef]

Brown, M. S.

Dreier, T.

Druet, S. A. J.

S. A. J. Druet, J.-P. E. Taran, Prog. Quantum Electron. 7, 1 (1981).
[CrossRef]

Ducloy, M.

M. Ducloy, D. Bloch, Phys. Rev. A 30, 3107 (1984).
[CrossRef]

D. Bloch, M. Ducloy, J. Phys. B 14, L471 (1981).
[CrossRef]

Eckbreth, A. C.

A. C. Eckbreth, Appl. Phys. Lett. 32, 421 (1978).
[CrossRef]

Eichler, H. J.

H. J. Eichler, P. Günter, D. W. Pohl, Laser-Induced Dynamic Gratings, T. Tamir, ed., Vol. 50 of Springer Series in Optical Sciences (Springer-Verlag, New York, 1986).

Farrow, R. L.

E. J. Friedman-Hill, L. A. Rahn, R. L. Farrow, J. Chem. Phys. 100, 4065 (1994).
[CrossRef]

R. L. Farrow, D. J. Rakestraw, Science 257, 1894 (1992).
[CrossRef] [PubMed]

Friedman-Hill, E. J.

E. J. Friedman-Hill, L. A. Rahn, R. L. Farrow, J. Chem. Phys. 100, 4065 (1994).
[CrossRef]

Günter, P.

H. J. Eichler, P. Günter, D. W. Pohl, Laser-Induced Dynamic Gratings, T. Tamir, ed., Vol. 50 of Springer Series in Optical Sciences (Springer-Verlag, New York, 1986).

Hogervorst, W.

I. Aben, W. Ubachs, G. Van der Zwan, W. Hogervorst, Mol. Phys. 76, 591 (1992).
[CrossRef]

Lam, J. F.

J. F. Lam, R. L. Abrams, Phys. Rev. A 26, 1539 (1982).
[CrossRef]

R. L. Abrams, J. F. Lam, R. C. Lind, D. G. Steel, P. F. Liao, in Optical Phase Conjugation, R. A. Fisher, ed. (Academic, New York, 1983), p. 211.

Liao, P. F.

R. L. Abrams, J. F. Lam, R. C. Lind, D. G. Steel, P. F. Liao, in Optical Phase Conjugation, R. A. Fisher, ed. (Academic, New York, 1983), p. 211.

Lind, R. C.

R. L. Abrams, J. F. Lam, R. C. Lind, D. G. Steel, P. F. Liao, in Optical Phase Conjugation, R. A. Fisher, ed. (Academic, New York, 1983), p. 211.

Monot, P.

B. Attal-Trétout, P. Monot, Mol. Phys. 73, 1257 (1991).
[CrossRef]

Pohl, D. W.

H. J. Eichler, P. Günter, D. W. Pohl, Laser-Induced Dynamic Gratings, T. Tamir, ed., Vol. 50 of Springer Series in Optical Sciences (Springer-Verlag, New York, 1986).

Rahn, L. A.

E. J. Friedman-Hill, L. A. Rahn, R. L. Farrow, J. Chem. Phys. 100, 4065 (1994).
[CrossRef]

M. S. Brown, L. A. Rahn, T. Dreier, Opt. Lett. 17, 76 (1992).
[CrossRef] [PubMed]

Rakestraw, D. J.

R. L. Farrow, D. J. Rakestraw, Science 257, 1894 (1992).
[CrossRef] [PubMed]

Remillard, J. T.

D. G. Steel, J. T. Remillard, Phys. Rev. A 36, 4330 (1987).
[CrossRef] [PubMed]

Steel, D. G.

D. G. Steel, J. T. Remillard, Phys. Rev. A 36, 4330 (1987).
[CrossRef] [PubMed]

R. L. Abrams, J. F. Lam, R. C. Lind, D. G. Steel, P. F. Liao, in Optical Phase Conjugation, R. A. Fisher, ed. (Academic, New York, 1983), p. 211.

Taran, J.-P. E.

S. A. J. Druet, J.-P. E. Taran, Prog. Quantum Electron. 7, 1 (1981).
[CrossRef]

Ubachs, W.

I. Aben, W. Ubachs, G. Van der Zwan, W. Hogervorst, Mol. Phys. 76, 591 (1992).
[CrossRef]

Van der Zwan, G.

I. Aben, W. Ubachs, G. Van der Zwan, W. Hogervorst, Mol. Phys. 76, 591 (1992).
[CrossRef]

Appl. Phys. Lett. (1)

A. C. Eckbreth, Appl. Phys. Lett. 32, 421 (1978).
[CrossRef]

J. Chem. Phys. (1)

E. J. Friedman-Hill, L. A. Rahn, R. L. Farrow, J. Chem. Phys. 100, 4065 (1994).
[CrossRef]

J. Phys. B (1)

D. Bloch, M. Ducloy, J. Phys. B 14, L471 (1981).
[CrossRef]

Mol. Phys. (2)

B. Attal-Trétout, P. Monot, Mol. Phys. 73, 1257 (1991).
[CrossRef]

I. Aben, W. Ubachs, G. Van der Zwan, W. Hogervorst, Mol. Phys. 76, 591 (1992).
[CrossRef]

Opt. Lett. (1)

Phys. Rev. A (3)

J. F. Lam, R. L. Abrams, Phys. Rev. A 26, 1539 (1982).
[CrossRef]

D. G. Steel, J. T. Remillard, Phys. Rev. A 36, 4330 (1987).
[CrossRef] [PubMed]

M. Ducloy, D. Bloch, Phys. Rev. A 30, 3107 (1984).
[CrossRef]

Prog. Quantum Electron. (1)

S. A. J. Druet, J.-P. E. Taran, Prog. Quantum Electron. 7, 1 (1981).
[CrossRef]

Science (1)

R. L. Farrow, D. J. Rakestraw, Science 257, 1894 (1992).
[CrossRef] [PubMed]

Other (2)

R. L. Abrams, J. F. Lam, R. C. Lind, D. G. Steel, P. F. Liao, in Optical Phase Conjugation, R. A. Fisher, ed. (Academic, New York, 1983), p. 211.

H. J. Eichler, P. Günter, D. W. Pohl, Laser-Induced Dynamic Gratings, T. Tamir, ed., Vol. 50 of Springer Series in Optical Sciences (Springer-Verlag, New York, 1986).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

Polarization characteristics of DFWM signals from OH in an H2–O2 flame. The ratios for which sfbp = yxyx, yyxx, and yxxy are plotted as filled symbols, open symbols, and crosses, respectively. The data are grouped by the net change in angular momentum (J) involved in the one-photon transition, and the error estimates are based on measurement statistics. Note the expanded vertical scale for the ΔJ = 0 transitions. The solid curves are theoretical ratios for the yxyx and yyxx components (predicted to be equal) based on perturbation theory for a closed two-level system. The theory for the yxxy ratios is plotted as dashed curves.

Fig. 2
Fig. 2

Polarization characteristics of OH DFWM signals compared with population-nonconserving (PNC) calculations, assuming that Le = 0. Polarizations dominated by the ground-state grating are compared with theory (solid curve) in (a), and polarizations dominated by the excited-state grating are compared with theory (dashed curve) in (b). The ratios for which sfbp = yxyx and yyxx are plotted as filled and open symbols, respectively. Data from ΔJ = + 1 (ΔJ = −1) transitions are denoted by the circles (squares).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

χ s f b p ( 3 ) A s f b p ( L Δ k g + L 2 k e ) + A s b f p ( L Δ k e + L 2 k g ) ,

Metrics