Abstract

We describe a practical approach to image storage in a coherent time-domain optical memory that can be readily implemented with existing technologies. In this approach, two-dimensional images are stored spectroholographically in narrow (≲1-MHz) frequency channels of a time-domain storage material by use of a low-power laser, with one image per channel. Advantages of this approach include fast single-frame recording time, variable playback speeds, and random frame access. Experimental results demonstrating the use of this approach for high-speed, long-term image storage in Eu3+:Y2SiO5 are presented.

© 1994 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. W. Carlson, W. R. Babbitt, T. W. Mossberg, Opt. Lett. 8, 623 (1983).
    [Crossref] [PubMed]
  2. M. K. Kim, R. Kachru, J. Opt. Soc. Am. B 4, 305 (1987); Opt. Lett. 12, 593 (1987).
    [Crossref] [PubMed]
  3. B. Kohler, S. Bernet, A. Renn, U. P. Wild, in Persistent Spectral Hole-Burning: Science and Applications, Vol. 16 of 1991 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1991), pp. 46–49; Opt. Lett. 18, 2144 (1993).
    [PubMed]
  4. F. H. Mok, M. C. Tackitt, H. M. Stoll, Opt. Lett. 16, 605 (1991); F. H. Mok, Opt. Lett. 18, 915 (1993).
    [Crossref] [PubMed]
  5. E. Y. Xu, S. Kröll, D. L. Huestis, R. Kachru, M. K Kim, Opt. Lett. 15, 562 (1990); X. A. Shen, R. Kachru, Opt. Lett. 17, 520 (1992).
    [Crossref] [PubMed]
  6. I. D. Abella, N. A. Kurnit, S. R. Hartmann, Phys. Rev. 141, 391 (1966).
    [Crossref]
  7. T. W. Mossberg, R. Kachru, S. R. Hartmann, A. M. Flusberg, Phys. Rev. A 20, 1976 (1979); T. W. Mossberg, Opt. Lett. 7, 77 (1982).
    [Crossref] [PubMed]
  8. Y. S. Bai, W. R. Babbitt, N. W. Carlson, T. W. Mossberg, Appl. Phys. Lett. 45, 714 (1984).
    [Crossref]
  9. P. Saari, R. Kaarli, A. Rebane, J. Opt. Soc. Am. B 3, 527 (1986).
    [Crossref]
  10. M. N. Cohen, in Principles of Modern Radar, J. L. Eaves, E. K Reedy, eds. (Van Nostrand Reinhold, New York, 1987), p. 465.
    [Crossref]

1991 (1)

1990 (1)

1987 (1)

1986 (1)

1984 (1)

Y. S. Bai, W. R. Babbitt, N. W. Carlson, T. W. Mossberg, Appl. Phys. Lett. 45, 714 (1984).
[Crossref]

1983 (1)

1979 (1)

T. W. Mossberg, R. Kachru, S. R. Hartmann, A. M. Flusberg, Phys. Rev. A 20, 1976 (1979); T. W. Mossberg, Opt. Lett. 7, 77 (1982).
[Crossref] [PubMed]

1966 (1)

I. D. Abella, N. A. Kurnit, S. R. Hartmann, Phys. Rev. 141, 391 (1966).
[Crossref]

Abella, I. D.

I. D. Abella, N. A. Kurnit, S. R. Hartmann, Phys. Rev. 141, 391 (1966).
[Crossref]

Babbitt, W. R.

Y. S. Bai, W. R. Babbitt, N. W. Carlson, T. W. Mossberg, Appl. Phys. Lett. 45, 714 (1984).
[Crossref]

N. W. Carlson, W. R. Babbitt, T. W. Mossberg, Opt. Lett. 8, 623 (1983).
[Crossref] [PubMed]

Bai, Y. S.

Y. S. Bai, W. R. Babbitt, N. W. Carlson, T. W. Mossberg, Appl. Phys. Lett. 45, 714 (1984).
[Crossref]

Bernet, S.

B. Kohler, S. Bernet, A. Renn, U. P. Wild, in Persistent Spectral Hole-Burning: Science and Applications, Vol. 16 of 1991 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1991), pp. 46–49; Opt. Lett. 18, 2144 (1993).
[PubMed]

Carlson, N. W.

Y. S. Bai, W. R. Babbitt, N. W. Carlson, T. W. Mossberg, Appl. Phys. Lett. 45, 714 (1984).
[Crossref]

N. W. Carlson, W. R. Babbitt, T. W. Mossberg, Opt. Lett. 8, 623 (1983).
[Crossref] [PubMed]

Cohen, M. N.

M. N. Cohen, in Principles of Modern Radar, J. L. Eaves, E. K Reedy, eds. (Van Nostrand Reinhold, New York, 1987), p. 465.
[Crossref]

Flusberg, A. M.

T. W. Mossberg, R. Kachru, S. R. Hartmann, A. M. Flusberg, Phys. Rev. A 20, 1976 (1979); T. W. Mossberg, Opt. Lett. 7, 77 (1982).
[Crossref] [PubMed]

Hartmann, S. R.

T. W. Mossberg, R. Kachru, S. R. Hartmann, A. M. Flusberg, Phys. Rev. A 20, 1976 (1979); T. W. Mossberg, Opt. Lett. 7, 77 (1982).
[Crossref] [PubMed]

I. D. Abella, N. A. Kurnit, S. R. Hartmann, Phys. Rev. 141, 391 (1966).
[Crossref]

Huestis, D. L.

Kaarli, R.

Kachru, R.

Kim, M. K

Kim, M. K.

Kohler, B.

B. Kohler, S. Bernet, A. Renn, U. P. Wild, in Persistent Spectral Hole-Burning: Science and Applications, Vol. 16 of 1991 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1991), pp. 46–49; Opt. Lett. 18, 2144 (1993).
[PubMed]

Kröll, S.

Kurnit, N. A.

I. D. Abella, N. A. Kurnit, S. R. Hartmann, Phys. Rev. 141, 391 (1966).
[Crossref]

Mok, F. H.

Mossberg, T. W.

Y. S. Bai, W. R. Babbitt, N. W. Carlson, T. W. Mossberg, Appl. Phys. Lett. 45, 714 (1984).
[Crossref]

N. W. Carlson, W. R. Babbitt, T. W. Mossberg, Opt. Lett. 8, 623 (1983).
[Crossref] [PubMed]

T. W. Mossberg, R. Kachru, S. R. Hartmann, A. M. Flusberg, Phys. Rev. A 20, 1976 (1979); T. W. Mossberg, Opt. Lett. 7, 77 (1982).
[Crossref] [PubMed]

Rebane, A.

Renn, A.

B. Kohler, S. Bernet, A. Renn, U. P. Wild, in Persistent Spectral Hole-Burning: Science and Applications, Vol. 16 of 1991 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1991), pp. 46–49; Opt. Lett. 18, 2144 (1993).
[PubMed]

Saari, P.

Stoll, H. M.

Tackitt, M. C.

Wild, U. P.

B. Kohler, S. Bernet, A. Renn, U. P. Wild, in Persistent Spectral Hole-Burning: Science and Applications, Vol. 16 of 1991 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1991), pp. 46–49; Opt. Lett. 18, 2144 (1993).
[PubMed]

Xu, E. Y.

Appl. Phys. Lett. (1)

Y. S. Bai, W. R. Babbitt, N. W. Carlson, T. W. Mossberg, Appl. Phys. Lett. 45, 714 (1984).
[Crossref]

J. Opt. Soc. Am. B (2)

Opt. Lett. (3)

Phys. Rev. (1)

I. D. Abella, N. A. Kurnit, S. R. Hartmann, Phys. Rev. 141, 391 (1966).
[Crossref]

Phys. Rev. A (1)

T. W. Mossberg, R. Kachru, S. R. Hartmann, A. M. Flusberg, Phys. Rev. A 20, 1976 (1979); T. W. Mossberg, Opt. Lett. 7, 77 (1982).
[Crossref] [PubMed]

Other (2)

B. Kohler, S. Bernet, A. Renn, U. P. Wild, in Persistent Spectral Hole-Burning: Science and Applications, Vol. 16 of 1991 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1991), pp. 46–49; Opt. Lett. 18, 2144 (1993).
[PubMed]

M. N. Cohen, in Principles of Modern Radar, J. L. Eaves, E. K Reedy, eds. (Van Nostrand Reinhold, New York, 1987), p. 465.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic of the one-frame-per-channel proach to image storage in CTDOM.

Fig. 2
Fig. 2

Experimental setup for time-domain holographic image storage. AOM’s, acousto-optic modulators; ICCD, intensified CCD camera; BE’s, beam expanders.

Fig. 3
Fig. 3

Experimental results demonstrating the storage of multiple images in CTDOM. The label at the upper left corner of each image represents the data channel number. Each channel is 1 MHz wide and is separated from the next by 4 MHz. The images are recalled 5 min after the completion of the recording.

Fig. 4
Fig. 4

Echo images: (a) after repeated recall from data channel #2 14 times, (b) 2 h after the completion of the recording.

Metrics