Abstract

We describe a practical approach to image storage in a coherent time-domain optical memory that can be readily implemented with existing technologies. In this approach, two-dimensional images are stored spectroholographically in narrow (≲1-MHz) frequency channels of a time-domain storage material by use of a low-power laser, with one image per channel. Advantages of this approach include fast single-frame recording time, variable playback speeds, and random frame access. Experimental results demonstrating the use of this approach for high-speed, long-term image storage in Eu3+:Y2SiO5 are presented.

© 1994 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription