Abstract

We report the experimental realization of new stable three-dimensional schemes for trapping neutral cesium atoms in a vapor cell that use either two or four Gaussian laser beams. Probe-beam absorption is employed to characterize both types of trap, and densities of 2 × 108 and 1 × 1010 cm−3, respectively, are measured for the two-and four-beam traps. The two-beam trapping mechanism combines a longitudinal magneto-optical force with a transverse spontaneous radiation pressure force associated basically with the beam geometry. This theoretical analysis compares well with our experimental observations.

© 1994 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. E. Pritchard, E. L Raab, V. Bagnato, C. Wieman, R. N. Watts, Phys. Rev. Lett. 57, 310 (1986).
    [CrossRef] [PubMed]
  2. A. Ashkin, J. P. Gordon, Opt. Lett. 8, 511 (1983).
    [CrossRef] [PubMed]
  3. E. L. Raab, M. Prentiss, A. Cable, S. Chu, D. E. Pritchard, Phys. Rev. Lett. 59, 2631 (1987).
    [CrossRef] [PubMed]
  4. K. E. Gibble, S. Kasapi, S. Chu, Opt. Lett. 17, 526 (1992).
    [CrossRef] [PubMed]
  5. J. W. R. Tabosa, G. Chen, Z. Hu, R. B. Lee, H. J. Kimble, Phys. Rev. Lett. 66, 3245 (1991); Braz. J. Phys. 22,237 (1992); D. Grison, B. Lounis, C. Salomon, J. Y. Courtois, G. Grynberg, Europhys. Lett. 15, 149 (1991).
    [CrossRef] [PubMed]
  6. F. Shimizu, K. Shimizu, H. Takuma, Opt. Lett. 16, 339 (1991).
    [CrossRef] [PubMed]
  7. T. Walker, D. Hoffmann, P. Feng, R. S. Williamson, Phys. Lett. A 163, 309 (1992).
    [CrossRef]
  8. T. Walker, P. Feng, D. Hoffmann, R. S. Williamson, Phys. Rev. Lett. 69, 2168 (1992).
    [CrossRef] [PubMed]
  9. C. Monroe, W. Swann, H. Robinson, C. Wieman, Phys. Rev. Lett. 65, 1571 (1990).
    [CrossRef] [PubMed]
  10. A similar trap configuration was suggested by Pritchard et al.,1 who also pointed out different ways to make a trap for neutral atoms.
  11. M. Oriá, M. Chevrollier, D. Bloch, M. Fichet, M. Ducloy, Europhys. Lett. 14, 527 (1991); M. Oriá, D. Bloch, M. Chevrollier, M. Fichet, M. Ducloy, Braz. J. Phys. 22, 15 (1992).
    [CrossRef]

1992 (3)

T. Walker, D. Hoffmann, P. Feng, R. S. Williamson, Phys. Lett. A 163, 309 (1992).
[CrossRef]

T. Walker, P. Feng, D. Hoffmann, R. S. Williamson, Phys. Rev. Lett. 69, 2168 (1992).
[CrossRef] [PubMed]

K. E. Gibble, S. Kasapi, S. Chu, Opt. Lett. 17, 526 (1992).
[CrossRef] [PubMed]

1991 (3)

F. Shimizu, K. Shimizu, H. Takuma, Opt. Lett. 16, 339 (1991).
[CrossRef] [PubMed]

M. Oriá, M. Chevrollier, D. Bloch, M. Fichet, M. Ducloy, Europhys. Lett. 14, 527 (1991); M. Oriá, D. Bloch, M. Chevrollier, M. Fichet, M. Ducloy, Braz. J. Phys. 22, 15 (1992).
[CrossRef]

J. W. R. Tabosa, G. Chen, Z. Hu, R. B. Lee, H. J. Kimble, Phys. Rev. Lett. 66, 3245 (1991); Braz. J. Phys. 22,237 (1992); D. Grison, B. Lounis, C. Salomon, J. Y. Courtois, G. Grynberg, Europhys. Lett. 15, 149 (1991).
[CrossRef] [PubMed]

1990 (1)

C. Monroe, W. Swann, H. Robinson, C. Wieman, Phys. Rev. Lett. 65, 1571 (1990).
[CrossRef] [PubMed]

1987 (1)

E. L. Raab, M. Prentiss, A. Cable, S. Chu, D. E. Pritchard, Phys. Rev. Lett. 59, 2631 (1987).
[CrossRef] [PubMed]

1986 (1)

D. E. Pritchard, E. L Raab, V. Bagnato, C. Wieman, R. N. Watts, Phys. Rev. Lett. 57, 310 (1986).
[CrossRef] [PubMed]

1983 (1)

Ashkin, A.

Bagnato, V.

D. E. Pritchard, E. L Raab, V. Bagnato, C. Wieman, R. N. Watts, Phys. Rev. Lett. 57, 310 (1986).
[CrossRef] [PubMed]

Bloch, D.

M. Oriá, M. Chevrollier, D. Bloch, M. Fichet, M. Ducloy, Europhys. Lett. 14, 527 (1991); M. Oriá, D. Bloch, M. Chevrollier, M. Fichet, M. Ducloy, Braz. J. Phys. 22, 15 (1992).
[CrossRef]

Cable, A.

E. L. Raab, M. Prentiss, A. Cable, S. Chu, D. E. Pritchard, Phys. Rev. Lett. 59, 2631 (1987).
[CrossRef] [PubMed]

Chen, G.

J. W. R. Tabosa, G. Chen, Z. Hu, R. B. Lee, H. J. Kimble, Phys. Rev. Lett. 66, 3245 (1991); Braz. J. Phys. 22,237 (1992); D. Grison, B. Lounis, C. Salomon, J. Y. Courtois, G. Grynberg, Europhys. Lett. 15, 149 (1991).
[CrossRef] [PubMed]

Chevrollier, M.

M. Oriá, M. Chevrollier, D. Bloch, M. Fichet, M. Ducloy, Europhys. Lett. 14, 527 (1991); M. Oriá, D. Bloch, M. Chevrollier, M. Fichet, M. Ducloy, Braz. J. Phys. 22, 15 (1992).
[CrossRef]

Chu, S.

K. E. Gibble, S. Kasapi, S. Chu, Opt. Lett. 17, 526 (1992).
[CrossRef] [PubMed]

E. L. Raab, M. Prentiss, A. Cable, S. Chu, D. E. Pritchard, Phys. Rev. Lett. 59, 2631 (1987).
[CrossRef] [PubMed]

Ducloy, M.

M. Oriá, M. Chevrollier, D. Bloch, M. Fichet, M. Ducloy, Europhys. Lett. 14, 527 (1991); M. Oriá, D. Bloch, M. Chevrollier, M. Fichet, M. Ducloy, Braz. J. Phys. 22, 15 (1992).
[CrossRef]

Feng, P.

T. Walker, P. Feng, D. Hoffmann, R. S. Williamson, Phys. Rev. Lett. 69, 2168 (1992).
[CrossRef] [PubMed]

T. Walker, D. Hoffmann, P. Feng, R. S. Williamson, Phys. Lett. A 163, 309 (1992).
[CrossRef]

Fichet, M.

M. Oriá, M. Chevrollier, D. Bloch, M. Fichet, M. Ducloy, Europhys. Lett. 14, 527 (1991); M. Oriá, D. Bloch, M. Chevrollier, M. Fichet, M. Ducloy, Braz. J. Phys. 22, 15 (1992).
[CrossRef]

Gibble, K. E.

Gordon, J. P.

Hoffmann, D.

T. Walker, P. Feng, D. Hoffmann, R. S. Williamson, Phys. Rev. Lett. 69, 2168 (1992).
[CrossRef] [PubMed]

T. Walker, D. Hoffmann, P. Feng, R. S. Williamson, Phys. Lett. A 163, 309 (1992).
[CrossRef]

Hu, Z.

J. W. R. Tabosa, G. Chen, Z. Hu, R. B. Lee, H. J. Kimble, Phys. Rev. Lett. 66, 3245 (1991); Braz. J. Phys. 22,237 (1992); D. Grison, B. Lounis, C. Salomon, J. Y. Courtois, G. Grynberg, Europhys. Lett. 15, 149 (1991).
[CrossRef] [PubMed]

Kasapi, S.

Kimble, H. J.

J. W. R. Tabosa, G. Chen, Z. Hu, R. B. Lee, H. J. Kimble, Phys. Rev. Lett. 66, 3245 (1991); Braz. J. Phys. 22,237 (1992); D. Grison, B. Lounis, C. Salomon, J. Y. Courtois, G. Grynberg, Europhys. Lett. 15, 149 (1991).
[CrossRef] [PubMed]

Lee, R. B.

J. W. R. Tabosa, G. Chen, Z. Hu, R. B. Lee, H. J. Kimble, Phys. Rev. Lett. 66, 3245 (1991); Braz. J. Phys. 22,237 (1992); D. Grison, B. Lounis, C. Salomon, J. Y. Courtois, G. Grynberg, Europhys. Lett. 15, 149 (1991).
[CrossRef] [PubMed]

Monroe, C.

C. Monroe, W. Swann, H. Robinson, C. Wieman, Phys. Rev. Lett. 65, 1571 (1990).
[CrossRef] [PubMed]

Oriá, M.

M. Oriá, M. Chevrollier, D. Bloch, M. Fichet, M. Ducloy, Europhys. Lett. 14, 527 (1991); M. Oriá, D. Bloch, M. Chevrollier, M. Fichet, M. Ducloy, Braz. J. Phys. 22, 15 (1992).
[CrossRef]

Prentiss, M.

E. L. Raab, M. Prentiss, A. Cable, S. Chu, D. E. Pritchard, Phys. Rev. Lett. 59, 2631 (1987).
[CrossRef] [PubMed]

Pritchard, D. E.

E. L. Raab, M. Prentiss, A. Cable, S. Chu, D. E. Pritchard, Phys. Rev. Lett. 59, 2631 (1987).
[CrossRef] [PubMed]

D. E. Pritchard, E. L Raab, V. Bagnato, C. Wieman, R. N. Watts, Phys. Rev. Lett. 57, 310 (1986).
[CrossRef] [PubMed]

Raab, E. L

D. E. Pritchard, E. L Raab, V. Bagnato, C. Wieman, R. N. Watts, Phys. Rev. Lett. 57, 310 (1986).
[CrossRef] [PubMed]

Raab, E. L.

E. L. Raab, M. Prentiss, A. Cable, S. Chu, D. E. Pritchard, Phys. Rev. Lett. 59, 2631 (1987).
[CrossRef] [PubMed]

Robinson, H.

C. Monroe, W. Swann, H. Robinson, C. Wieman, Phys. Rev. Lett. 65, 1571 (1990).
[CrossRef] [PubMed]

Shimizu, F.

Shimizu, K.

Swann, W.

C. Monroe, W. Swann, H. Robinson, C. Wieman, Phys. Rev. Lett. 65, 1571 (1990).
[CrossRef] [PubMed]

Tabosa, J. W. R.

J. W. R. Tabosa, G. Chen, Z. Hu, R. B. Lee, H. J. Kimble, Phys. Rev. Lett. 66, 3245 (1991); Braz. J. Phys. 22,237 (1992); D. Grison, B. Lounis, C. Salomon, J. Y. Courtois, G. Grynberg, Europhys. Lett. 15, 149 (1991).
[CrossRef] [PubMed]

Takuma, H.

Walker, T.

T. Walker, D. Hoffmann, P. Feng, R. S. Williamson, Phys. Lett. A 163, 309 (1992).
[CrossRef]

T. Walker, P. Feng, D. Hoffmann, R. S. Williamson, Phys. Rev. Lett. 69, 2168 (1992).
[CrossRef] [PubMed]

Watts, R. N.

D. E. Pritchard, E. L Raab, V. Bagnato, C. Wieman, R. N. Watts, Phys. Rev. Lett. 57, 310 (1986).
[CrossRef] [PubMed]

Wieman, C.

C. Monroe, W. Swann, H. Robinson, C. Wieman, Phys. Rev. Lett. 65, 1571 (1990).
[CrossRef] [PubMed]

D. E. Pritchard, E. L Raab, V. Bagnato, C. Wieman, R. N. Watts, Phys. Rev. Lett. 57, 310 (1986).
[CrossRef] [PubMed]

Williamson, R. S.

T. Walker, P. Feng, D. Hoffmann, R. S. Williamson, Phys. Rev. Lett. 69, 2168 (1992).
[CrossRef] [PubMed]

T. Walker, D. Hoffmann, P. Feng, R. S. Williamson, Phys. Lett. A 163, 309 (1992).
[CrossRef]

Europhys. Lett. (1)

M. Oriá, M. Chevrollier, D. Bloch, M. Fichet, M. Ducloy, Europhys. Lett. 14, 527 (1991); M. Oriá, D. Bloch, M. Chevrollier, M. Fichet, M. Ducloy, Braz. J. Phys. 22, 15 (1992).
[CrossRef]

Opt. Lett. (3)

Phys. Lett. A (1)

T. Walker, D. Hoffmann, P. Feng, R. S. Williamson, Phys. Lett. A 163, 309 (1992).
[CrossRef]

Phys. Rev. Lett. (5)

T. Walker, P. Feng, D. Hoffmann, R. S. Williamson, Phys. Rev. Lett. 69, 2168 (1992).
[CrossRef] [PubMed]

C. Monroe, W. Swann, H. Robinson, C. Wieman, Phys. Rev. Lett. 65, 1571 (1990).
[CrossRef] [PubMed]

J. W. R. Tabosa, G. Chen, Z. Hu, R. B. Lee, H. J. Kimble, Phys. Rev. Lett. 66, 3245 (1991); Braz. J. Phys. 22,237 (1992); D. Grison, B. Lounis, C. Salomon, J. Y. Courtois, G. Grynberg, Europhys. Lett. 15, 149 (1991).
[CrossRef] [PubMed]

D. E. Pritchard, E. L Raab, V. Bagnato, C. Wieman, R. N. Watts, Phys. Rev. Lett. 57, 310 (1986).
[CrossRef] [PubMed]

E. L. Raab, M. Prentiss, A. Cable, S. Chu, D. E. Pritchard, Phys. Rev. Lett. 59, 2631 (1987).
[CrossRef] [PubMed]

Other (1)

A similar trap configuration was suggested by Pritchard et al.,1 who also pointed out different ways to make a trap for neutral atoms.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Schematic arrangement for the TBT and the FBT. The two lenses (L’s) have equal focal lengths, and only for the FBT is the pair of counterpropagating laser beams along the y direction present.

Fig. 2
Fig. 2

TBT fluorescence as a function of time after the magnetic field is turned on. The magnetic field gradient along the z direction is 25 G/cm. Inset: normalized trap fluorescence as a function of magnetic field gradient for the TBT (●) and the FBT (○). The trap fluorescence is normalized to its maximum in each type of trap. The trapping lasers are red detuned by ~10 MHz.

Fig. 3
Fig. 3

Probe-beam absorption spectrum of cesium atoms characterizing the TBT. The peaks are associated with the hyperfine transitions F = 4 → F′ = 5,4,3.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

F z ( z , v z , y = 0 ) = - k z z - γ z v z , F y ( y , v y , z = 0 ) = - k y y - γ y y 2 v y ,
k z = - k Γ δ 2 + Γ 2 / 4 Ω 0 2 z ( z 0 z ) 2 ( 1 + μ B b z δ / δ 2 + Γ 2 / 4 ) , γ z = k 2 Γ δ ( δ 2 + Γ 2 / 4 ) 2 Ω 0 2 ( z 0 z ) 2 , k y = k Γ Ω 0 2 2 ( δ 2 + Γ 2 / 4 ) z 0 2 z 3 ,             γ y = k 2 Γ δ Ω 0 2 ( δ 2 + Γ 2 / 4 ) 2 z 0 2 z 4 .

Metrics