Abstract

A homogeneously aligned smectic A* liquid-crystal quarter-wave retarder is used to produce analog complex-amplitude modulation of light through the electroclinic effect. The device consists of a reflection-mode polarization rotative phase shifter enhanced by an asymmetric resonator. With an entrance mirror reflectivity of 70%, an analog modulation of 65% of a fringe was observed. The 10–90% response time of the liquid crystal was measured to be 25 μs at 25°C.

© 1994 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. E. Gilman, T. G. Baur, D. J. Gallagher, N. K. Shankar, Proc. Soc. Photo-Opt. Instrum. Eng. 1166, 461 (1989).
  2. Measurement made by Liu Jian Yu (University of Colorado at Boulder, Boulder, Colo., 1992) on a cell fabricated, with HEM1 mixture.
  3. A. G. Fox, Proc. IRE (1947), p. 1489.
    [CrossRef]
  4. R. C. Jones, J. Opt. Soc. Am. 31, 500 (1941).
    [CrossRef]
  5. J. W. Evans, J. Opt. Soc. Am. 39, 229 (1949).
    [CrossRef]
  6. S. Pancharatnam, Proc. Natl. Acad. Sci. India 41, 137 (1955).
  7. M. F. Billet, Traite Opt. Phys. 2, 328 (1859).
  8. T. H. Chyba, L. J. Wand, L. Mandel, Opt. Lett. 13, 562 (1988).
    [CrossRef] [PubMed]
  9. M. O. Freeman, T. A. Brown, D. M. Walba, Appl. Opt. 31, 3917 (1992).
    [CrossRef] [PubMed]
  10. F. Gires, P. Tournois, C. R. Acad. Sci. (Paris) 258, 6112 (1964).
  11. M. L. Tsai, S. H. Chen, S. D. Jacobs, Appl. Phys. Lett, 54, 2395 (1989).
    [CrossRef]

1992 (1)

1989 (2)

M. L. Tsai, S. H. Chen, S. D. Jacobs, Appl. Phys. Lett, 54, 2395 (1989).
[CrossRef]

S. E. Gilman, T. G. Baur, D. J. Gallagher, N. K. Shankar, Proc. Soc. Photo-Opt. Instrum. Eng. 1166, 461 (1989).

1988 (1)

1964 (1)

F. Gires, P. Tournois, C. R. Acad. Sci. (Paris) 258, 6112 (1964).

1955 (1)

S. Pancharatnam, Proc. Natl. Acad. Sci. India 41, 137 (1955).

1949 (1)

1947 (1)

A. G. Fox, Proc. IRE (1947), p. 1489.
[CrossRef]

1941 (1)

1859 (1)

M. F. Billet, Traite Opt. Phys. 2, 328 (1859).

Baur, T. G.

S. E. Gilman, T. G. Baur, D. J. Gallagher, N. K. Shankar, Proc. Soc. Photo-Opt. Instrum. Eng. 1166, 461 (1989).

Billet, M. F.

M. F. Billet, Traite Opt. Phys. 2, 328 (1859).

Brown, T. A.

Chen, S. H.

M. L. Tsai, S. H. Chen, S. D. Jacobs, Appl. Phys. Lett, 54, 2395 (1989).
[CrossRef]

Chyba, T. H.

Evans, J. W.

Fox, A. G.

A. G. Fox, Proc. IRE (1947), p. 1489.
[CrossRef]

Freeman, M. O.

Gallagher, D. J.

S. E. Gilman, T. G. Baur, D. J. Gallagher, N. K. Shankar, Proc. Soc. Photo-Opt. Instrum. Eng. 1166, 461 (1989).

Gilman, S. E.

S. E. Gilman, T. G. Baur, D. J. Gallagher, N. K. Shankar, Proc. Soc. Photo-Opt. Instrum. Eng. 1166, 461 (1989).

Gires, F.

F. Gires, P. Tournois, C. R. Acad. Sci. (Paris) 258, 6112 (1964).

Jacobs, S. D.

M. L. Tsai, S. H. Chen, S. D. Jacobs, Appl. Phys. Lett, 54, 2395 (1989).
[CrossRef]

Jones, R. C.

Mandel, L.

Pancharatnam, S.

S. Pancharatnam, Proc. Natl. Acad. Sci. India 41, 137 (1955).

Shankar, N. K.

S. E. Gilman, T. G. Baur, D. J. Gallagher, N. K. Shankar, Proc. Soc. Photo-Opt. Instrum. Eng. 1166, 461 (1989).

Tournois, P.

F. Gires, P. Tournois, C. R. Acad. Sci. (Paris) 258, 6112 (1964).

Tsai, M. L.

M. L. Tsai, S. H. Chen, S. D. Jacobs, Appl. Phys. Lett, 54, 2395 (1989).
[CrossRef]

Walba, D. M.

Wand, L. J.

Appl. Opt. (1)

Appl. Phys. Lett, (1)

M. L. Tsai, S. H. Chen, S. D. Jacobs, Appl. Phys. Lett, 54, 2395 (1989).
[CrossRef]

C. R. Acad. Sci. (1)

F. Gires, P. Tournois, C. R. Acad. Sci. (Paris) 258, 6112 (1964).

J. Opt. Soc. Am. (2)

Opt. Lett. (1)

Proc. IRE (1)

A. G. Fox, Proc. IRE (1947), p. 1489.
[CrossRef]

Proc. Natl. Acad. Sci. India (1)

S. Pancharatnam, Proc. Natl. Acad. Sci. India 41, 137 (1955).

Proc. Soc. Photo-Opt. Instrum. Eng. (1)

S. E. Gilman, T. G. Baur, D. J. Gallagher, N. K. Shankar, Proc. Soc. Photo-Opt. Instrum. Eng. 1166, 461 (1989).

Traite Opt. Phys. (1)

M. F. Billet, Traite Opt. Phys. 2, 328 (1859).

Other (1)

Measurement made by Liu Jian Yu (University of Colorado at Boulder, Boulder, Colo., 1992) on a cell fabricated, with HEM1 mixture.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Diagram of the resonated CLOVAR device.

Fig. 2
Fig. 2

CLOVAR device output phase (χ) as a function of the active quarter-wave retarder orientation (α) for various entrance mirror reflectivities (R).

Fig. 3
Fig. 3

Experimentally measured fringe shift with the resonated CLOVAR device used as an arm of a Michelson interferometer. The upper and lower fringe sets correspond to bias voltages of +30 and −30 V, respectively, with a relative shift of approximately 65%.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

E r = [ r 1 + + t 1 - Q - r 2 + Q + [ I - r 1 - Q - 1 r 2 + Q + ] - 1 t 1 + ] E 0 ,
r 1 + = - r 1 - = - R [ - 1 0 0 1 ] ,             r 2 + = [ - 1 0 0 1 ] ,             t 1 + t 1 - = ( 1 - R ) [ 1 0 0 1 ] ,
Q + = W ( π / 2 , - π / 4 + α ) W ( π / 2 , π / 4 ) , Q - = W ( π / 2 , - π / 4 ) W ( π / 2 , π / 4 - α ) ,
E r = [ - exp ( i χ x ) 0 0 exp ( i χ y ) ] E 0 ,
χ x = 2 tan - 1 [ G tan ( γ - α ) ] , χ y = 2 tan - 1 [ G tan ( γ + α ) ] ,

Metrics