Abstract

The spatial resolution of laser eigenstates is applied to ring geometry. A bidirectional optical diode based on the Faraday effect and nonreciprocal intracavity losses is theoretically and experimentally investigated. This novel optical diode combined with spatial separation provides a biased gyro with no lock-in band.

© 1994 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. W. Chow, J. Gea-Banacloche, L. M. Pedrotti, V. E. Sanders, W. Schleich, M. O. Scully, Rev. Mod. Phys. 57, 61 (1985)J. R. Wilkinson, in Progress in Quantum Electronics, T. S. Moss, ed. (Pergamon, Oxford, 1987), Vol. 11, pp. 1–103.
    [Crossref]
  2. H. Statz, T. A. Dorschner, M. Holtz, I. W. Smith, in Laser Handbook, M. L. Stitch, M. Bass, eds. (North-Holland, Amsterdam, 1985), Vol. 4, pp. 229–332; M. Pinard, M. Vallet, G. Grynberg, J. Phys. (Paris) 51, 2091 (1990).
  3. S. Huang, K. Toyama, B. Y. Kim, H. J. Shaw, Opt. Lett. 18, 555 (1993).
    [Crossref] [PubMed]
  4. J. Chesnoy, Opt. Lett. 14, 990 (1989); M. L. Dennis, J. C. M. Diels, M. Lai, Opt. Lett. 16, 529 (1991); W. R. Christian, M. J. Rosker, Opt. Lett. 16, 1587 (1991).
    [Crossref] [PubMed]
  5. F. Bretenaker, A. Le Floch, J. Opt. Soc. Am. B 8, 230 (1991); F. Bretenaker, A. Le Floch, J. Opt. Soc. Am. B 9, 2295 (1992).
    [Crossref]
  6. N. H. Tran, T. Foucher, P. Lagoutte, C. Migault, F. Bretenaker, A. Le Floch, Opt. Lett. 18, 2056 (1993).
    [Crossref] [PubMed]
  7. F. Biraben, Opt. Commun. 29,353 (1979); G. T. Maker, G. P. A. Malcom, A. I. Ferguson, Opt. Lett. 18, 1813 (1993).
    [Crossref] [PubMed]
  8. M. Born, E. Wolf, Principles of Optics, 3rd ed. (Pergamon, New York, 1986), Chap. 1, p. 38.
  9. We note that spatial resolution neutralizes gain competition and therefore makes possible the use of one single isotope in the RLG, which simplifies the nature of the Faraday effect in the active medium.

1993 (2)

1991 (1)

1989 (1)

1985 (1)

W. W. Chow, J. Gea-Banacloche, L. M. Pedrotti, V. E. Sanders, W. Schleich, M. O. Scully, Rev. Mod. Phys. 57, 61 (1985)J. R. Wilkinson, in Progress in Quantum Electronics, T. S. Moss, ed. (Pergamon, Oxford, 1987), Vol. 11, pp. 1–103.
[Crossref]

1979 (1)

F. Biraben, Opt. Commun. 29,353 (1979); G. T. Maker, G. P. A. Malcom, A. I. Ferguson, Opt. Lett. 18, 1813 (1993).
[Crossref] [PubMed]

Biraben, F.

F. Biraben, Opt. Commun. 29,353 (1979); G. T. Maker, G. P. A. Malcom, A. I. Ferguson, Opt. Lett. 18, 1813 (1993).
[Crossref] [PubMed]

Born, M.

M. Born, E. Wolf, Principles of Optics, 3rd ed. (Pergamon, New York, 1986), Chap. 1, p. 38.

Bretenaker, F.

Chesnoy, J.

Chow, W. W.

W. W. Chow, J. Gea-Banacloche, L. M. Pedrotti, V. E. Sanders, W. Schleich, M. O. Scully, Rev. Mod. Phys. 57, 61 (1985)J. R. Wilkinson, in Progress in Quantum Electronics, T. S. Moss, ed. (Pergamon, Oxford, 1987), Vol. 11, pp. 1–103.
[Crossref]

Dorschner, T. A.

H. Statz, T. A. Dorschner, M. Holtz, I. W. Smith, in Laser Handbook, M. L. Stitch, M. Bass, eds. (North-Holland, Amsterdam, 1985), Vol. 4, pp. 229–332; M. Pinard, M. Vallet, G. Grynberg, J. Phys. (Paris) 51, 2091 (1990).

Foucher, T.

Gea-Banacloche, J.

W. W. Chow, J. Gea-Banacloche, L. M. Pedrotti, V. E. Sanders, W. Schleich, M. O. Scully, Rev. Mod. Phys. 57, 61 (1985)J. R. Wilkinson, in Progress in Quantum Electronics, T. S. Moss, ed. (Pergamon, Oxford, 1987), Vol. 11, pp. 1–103.
[Crossref]

Holtz, M.

H. Statz, T. A. Dorschner, M. Holtz, I. W. Smith, in Laser Handbook, M. L. Stitch, M. Bass, eds. (North-Holland, Amsterdam, 1985), Vol. 4, pp. 229–332; M. Pinard, M. Vallet, G. Grynberg, J. Phys. (Paris) 51, 2091 (1990).

Huang, S.

Kim, B. Y.

Lagoutte, P.

Le Floch, A.

Migault, C.

Pedrotti, L. M.

W. W. Chow, J. Gea-Banacloche, L. M. Pedrotti, V. E. Sanders, W. Schleich, M. O. Scully, Rev. Mod. Phys. 57, 61 (1985)J. R. Wilkinson, in Progress in Quantum Electronics, T. S. Moss, ed. (Pergamon, Oxford, 1987), Vol. 11, pp. 1–103.
[Crossref]

Sanders, V. E.

W. W. Chow, J. Gea-Banacloche, L. M. Pedrotti, V. E. Sanders, W. Schleich, M. O. Scully, Rev. Mod. Phys. 57, 61 (1985)J. R. Wilkinson, in Progress in Quantum Electronics, T. S. Moss, ed. (Pergamon, Oxford, 1987), Vol. 11, pp. 1–103.
[Crossref]

Schleich, W.

W. W. Chow, J. Gea-Banacloche, L. M. Pedrotti, V. E. Sanders, W. Schleich, M. O. Scully, Rev. Mod. Phys. 57, 61 (1985)J. R. Wilkinson, in Progress in Quantum Electronics, T. S. Moss, ed. (Pergamon, Oxford, 1987), Vol. 11, pp. 1–103.
[Crossref]

Scully, M. O.

W. W. Chow, J. Gea-Banacloche, L. M. Pedrotti, V. E. Sanders, W. Schleich, M. O. Scully, Rev. Mod. Phys. 57, 61 (1985)J. R. Wilkinson, in Progress in Quantum Electronics, T. S. Moss, ed. (Pergamon, Oxford, 1987), Vol. 11, pp. 1–103.
[Crossref]

Shaw, H. J.

Smith, I. W.

H. Statz, T. A. Dorschner, M. Holtz, I. W. Smith, in Laser Handbook, M. L. Stitch, M. Bass, eds. (North-Holland, Amsterdam, 1985), Vol. 4, pp. 229–332; M. Pinard, M. Vallet, G. Grynberg, J. Phys. (Paris) 51, 2091 (1990).

Statz, H.

H. Statz, T. A. Dorschner, M. Holtz, I. W. Smith, in Laser Handbook, M. L. Stitch, M. Bass, eds. (North-Holland, Amsterdam, 1985), Vol. 4, pp. 229–332; M. Pinard, M. Vallet, G. Grynberg, J. Phys. (Paris) 51, 2091 (1990).

Toyama, K.

Tran, N. H.

Wolf, E.

M. Born, E. Wolf, Principles of Optics, 3rd ed. (Pergamon, New York, 1986), Chap. 1, p. 38.

J. Opt. Soc. Am. B (1)

Opt. Commun. (1)

F. Biraben, Opt. Commun. 29,353 (1979); G. T. Maker, G. P. A. Malcom, A. I. Ferguson, Opt. Lett. 18, 1813 (1993).
[Crossref] [PubMed]

Opt. Lett. (3)

Rev. Mod. Phys. (1)

W. W. Chow, J. Gea-Banacloche, L. M. Pedrotti, V. E. Sanders, W. Schleich, M. O. Scully, Rev. Mod. Phys. 57, 61 (1985)J. R. Wilkinson, in Progress in Quantum Electronics, T. S. Moss, ed. (Pergamon, Oxford, 1987), Vol. 11, pp. 1–103.
[Crossref]

Other (3)

H. Statz, T. A. Dorschner, M. Holtz, I. W. Smith, in Laser Handbook, M. L. Stitch, M. Bass, eds. (North-Holland, Amsterdam, 1985), Vol. 4, pp. 229–332; M. Pinard, M. Vallet, G. Grynberg, J. Phys. (Paris) 51, 2091 (1990).

M. Born, E. Wolf, Principles of Optics, 3rd ed. (Pergamon, New York, 1986), Chap. 1, p. 38.

We note that spatial resolution neutralizes gain competition and therefore makes possible the use of one single isotope in the RLG, which simplifies the nature of the Faraday effect in the active medium.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Experimental apparatus: A.M., active medium; B, magnetic field applied to the discharge; Ω, rotation rate of the cavity in its plane; A1, A2, two positions of the oscillating fields.

Fig. 2
Fig. 2

Evolution of the eigenstate Jones vectors during propagation from one rutile crystal to the other. The dashed–dotted lines represent the low-and high-loss axes of the Brewster plate. The dashed arrows represent the losses caused by the intracavity components C1, C2, and P. θF is the Faraday angle. The gain of the active medium is taken to be 1. The bold arrows correspond to the oscillating eigenstates. Here, for the sake of clarity, θF is taken to be 30° and T2 to be 0.5. In the experiments, T2 is equal to 0.8 and θF is of the order of a few degrees.

Fig. 3
Fig. 3

Output power versus cavity frequency νc of the four eigenstates for (a) B = 30 G, (b) B = −30 G (horizontal axis, 39 MHz/division). The relative excitation is 1.2.

Fig. 4
Fig. 4

Variation of the beat frequency as a function of the rotation rate. Filled circles, the sum of the two beat frequencies corresponding to the two opposite directions of the magnetic field; dashed line, the theoretical response 2SΩ filled diamonds, the beat frequencies of the ordinary states when B = 0; dotted curves, the theoretical response of a RLG. The magnetic field is reversed every second, with a switching time of the order of 10 μs.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

P o + - P o - = - R 2 ( 1 - T 2 ) sin 2 θ F , P e + - P e - = R 2 ( 1 - T 2 ) sin 2 θ F ,
ν ( E o + , - ) = ν o S Ω 2 , ν ( E e + , - ) = ν e S Ω 2 .
ν ( E e - ) - ν ( E o + ) = ( ν e - ν o ) + S Ω for θ F > 0 , ν ( E o - ) - ν ( E e + ) = - ( ν e - ν o ) + S Ω for θ F < 0.

Metrics