Abstract

Highly efficient TEM00-mode laser power of 11.5 W was obtained by the diode-array side pumping of a Nd:YAG rod. We maintained efficient laser operation at all pump powers by correcting for the changing thermal lens with an adjustable-curvature mirror.

© 1994 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. H. Sarkies, Opt. Commun. 31, 189 (1979).
    [CrossRef]
  2. D. C. Hanna, C. G. Sawyer, M. A. Yuratich, Opt. Quantum Electron. 13, 493 (1981).
    [CrossRef]
  3. W. Koechner, Solid-State Laser Engineering (Springer-Verlag, Berlin, 1992), p. 381.
  4. V. V. Apollonov, G. V. Vdovin, L. M. Ostrovskaya, V. N. Rodin, S. A. Chetkin, Sov. J. Quantum Electron. 21, 116 (1991).
    [CrossRef]
  5. A. K. Cousins, Appl. Opt. 31, 7259 (1992).
    [CrossRef] [PubMed]
  6. K. Girkmann, Flächentragwerke (Springer-Verlag, Berlin, 1974), p. 244.
  7. Melles Griot Catalog, Optics Guide 5 (Melles Griot, Irvine, Calif., 1990), pp. 3–9.
  8. The laser rod was manufactured by Kristall-Technologie Andreas Maier GmbH, Schwendi-Hörenhausen, Germany.
  9. U. J. Greiner, H. H. Klingenberg, D. R. Walker, C. J. Flood, H. M. van Driel, Appl. Phys. B 58, 393 (1994).
    [CrossRef]
  10. The absorption coefficient for Nd:YAG was taken as 4 cm−1.

1994

U. J. Greiner, H. H. Klingenberg, D. R. Walker, C. J. Flood, H. M. van Driel, Appl. Phys. B 58, 393 (1994).
[CrossRef]

1992

1991

V. V. Apollonov, G. V. Vdovin, L. M. Ostrovskaya, V. N. Rodin, S. A. Chetkin, Sov. J. Quantum Electron. 21, 116 (1991).
[CrossRef]

1981

D. C. Hanna, C. G. Sawyer, M. A. Yuratich, Opt. Quantum Electron. 13, 493 (1981).
[CrossRef]

1979

P. H. Sarkies, Opt. Commun. 31, 189 (1979).
[CrossRef]

Apollonov, V. V.

V. V. Apollonov, G. V. Vdovin, L. M. Ostrovskaya, V. N. Rodin, S. A. Chetkin, Sov. J. Quantum Electron. 21, 116 (1991).
[CrossRef]

Chetkin, S. A.

V. V. Apollonov, G. V. Vdovin, L. M. Ostrovskaya, V. N. Rodin, S. A. Chetkin, Sov. J. Quantum Electron. 21, 116 (1991).
[CrossRef]

Cousins, A. K.

Flood, C. J.

U. J. Greiner, H. H. Klingenberg, D. R. Walker, C. J. Flood, H. M. van Driel, Appl. Phys. B 58, 393 (1994).
[CrossRef]

Girkmann, K.

K. Girkmann, Flächentragwerke (Springer-Verlag, Berlin, 1974), p. 244.

Greiner, U. J.

U. J. Greiner, H. H. Klingenberg, D. R. Walker, C. J. Flood, H. M. van Driel, Appl. Phys. B 58, 393 (1994).
[CrossRef]

Hanna, D. C.

D. C. Hanna, C. G. Sawyer, M. A. Yuratich, Opt. Quantum Electron. 13, 493 (1981).
[CrossRef]

Klingenberg, H. H.

U. J. Greiner, H. H. Klingenberg, D. R. Walker, C. J. Flood, H. M. van Driel, Appl. Phys. B 58, 393 (1994).
[CrossRef]

Koechner, W.

W. Koechner, Solid-State Laser Engineering (Springer-Verlag, Berlin, 1992), p. 381.

Ostrovskaya, L. M.

V. V. Apollonov, G. V. Vdovin, L. M. Ostrovskaya, V. N. Rodin, S. A. Chetkin, Sov. J. Quantum Electron. 21, 116 (1991).
[CrossRef]

Rodin, V. N.

V. V. Apollonov, G. V. Vdovin, L. M. Ostrovskaya, V. N. Rodin, S. A. Chetkin, Sov. J. Quantum Electron. 21, 116 (1991).
[CrossRef]

Sarkies, P. H.

P. H. Sarkies, Opt. Commun. 31, 189 (1979).
[CrossRef]

Sawyer, C. G.

D. C. Hanna, C. G. Sawyer, M. A. Yuratich, Opt. Quantum Electron. 13, 493 (1981).
[CrossRef]

van Driel, H. M.

U. J. Greiner, H. H. Klingenberg, D. R. Walker, C. J. Flood, H. M. van Driel, Appl. Phys. B 58, 393 (1994).
[CrossRef]

Vdovin, G. V.

V. V. Apollonov, G. V. Vdovin, L. M. Ostrovskaya, V. N. Rodin, S. A. Chetkin, Sov. J. Quantum Electron. 21, 116 (1991).
[CrossRef]

Walker, D. R.

U. J. Greiner, H. H. Klingenberg, D. R. Walker, C. J. Flood, H. M. van Driel, Appl. Phys. B 58, 393 (1994).
[CrossRef]

Yuratich, M. A.

D. C. Hanna, C. G. Sawyer, M. A. Yuratich, Opt. Quantum Electron. 13, 493 (1981).
[CrossRef]

Appl. Opt.

Appl. Phys. B

U. J. Greiner, H. H. Klingenberg, D. R. Walker, C. J. Flood, H. M. van Driel, Appl. Phys. B 58, 393 (1994).
[CrossRef]

Opt. Commun.

P. H. Sarkies, Opt. Commun. 31, 189 (1979).
[CrossRef]

Opt. Quantum Electron.

D. C. Hanna, C. G. Sawyer, M. A. Yuratich, Opt. Quantum Electron. 13, 493 (1981).
[CrossRef]

Sov. J. Quantum Electron.

V. V. Apollonov, G. V. Vdovin, L. M. Ostrovskaya, V. N. Rodin, S. A. Chetkin, Sov. J. Quantum Electron. 21, 116 (1991).
[CrossRef]

Other

W. Koechner, Solid-State Laser Engineering (Springer-Verlag, Berlin, 1992), p. 381.

The absorption coefficient for Nd:YAG was taken as 4 cm−1.

K. Girkmann, Flächentragwerke (Springer-Verlag, Berlin, 1974), p. 244.

Melles Griot Catalog, Optics Guide 5 (Melles Griot, Irvine, Calif., 1990), pp. 3–9.

The laser rod was manufactured by Kristall-Technologie Andreas Maier GmbH, Schwendi-Hörenhausen, Germany.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic showing the bending, w(r), of the glass plate, in which p is the load per unit area, b is the radius of the area on which the force acts, and a is the radius of the plate.

Fig. 2
Fig. 2

Comparison of the calculated (solid curve) and measured (filled circles) phase difference of the deformed mirror. The calculations are for a maximum deformation of 35 μm that results in a radius of curvature of 37 cm. The inset shows the actual interferogram from the convex mirror.

Fig. 3
Fig. 3

Experimental setup, with the ACM on the left-hand side. The micrometer screw presses on the center of the thin glass plate (2.5 cm in diameter and 0.5 mm thick) to produce a convex mirror. The Nd:YAG laser is pumped by six laser diode arrays. The output coupler was 11%, and the overall resonator length was 40 cm.

Fig. 4
Fig. 4

TEM00 laser power versus pump power incident upon the flow tube. The filled circles show the case in which the mirror is constantly adjusted from a plane mirror at threshold to a curved mirror (wmax = 40 ± 5 μm) at full pump power to produce the correct resonator mode and thus efficient TEM00 operation. The filled triangles show the case for a fixed resonator optimized for a strong thermal lens.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

w ( r ) = 3 p b 2 ( 1 - μ ) 4 E h 3 { r 4 4 b 2 + r 2 [ ( 1 - μ ) b 2 - 4 a 2 2 ( 1 + μ ) a 2 + 2 ln b a ] + 4 ( 3 + μ ) a 2 - ( 7 + 3 μ ) b 2 4 ( 1 + μ ) + b 2 ln b a } ,
w ( r ) = 3 p b 2 ( 1 - μ ) 4 E h 3 [ 3 + μ 1 + μ a 2 ( 1 - r 2 a 2 ) - 2 r 2 ln a r - 1 - μ 2 ( 1 + μ ) b 2 ( 1 - r 2 a 2 ) - b 2 ln b a ] .
R = ( d 2 w d r 2 ) - 1 = 4 ( 3 + μ ) a 2 - ( 7 + 3 μ ) b 2 4 ( 1 + μ ) + b 2 ln b a 2 w max [ ( 1 - μ ) b 2 - 4 a 2 2 ( 1 + μ ) a 2 + 2 ln b a ] .

Metrics