Abstract

We numerically study the evolution of nonsoliton signals in fiber links in the presence of the Kerr effect, chromatic dispersion, and the amplified spontaneous emission of optical amplifiers. Conditions in which the amplified spontaneous emission noise does not deeply affect the signal propagation are found, and the nonlinear Kerr compensation of the distortion induced by the chromatic dispersion is shown.

© 1994 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Marcuse, J. Lightwave Technol. 9, 356 (1991).
    [CrossRef]
  2. J. P. Gordon, H. A. Haus, Opt. Lett. 11, 665 (1986).
    [CrossRef] [PubMed]
  3. A. Mecozzi, J. D. Moores, H. A. Haus, Y. Lai, Opt. Lett. 16, 1841 (1991).
    [CrossRef] [PubMed]
  4. J. P. Hamaide, P. Emplit, Electron. Lett. 26, 1451 (1990).
    [CrossRef]
  5. E. Iannone, F. S. Locati, F. Matera, M. Romagnoli, M. Settembre, Electron. Lett. 28, 1902 (1992).
    [CrossRef]
  6. A. H. Gnauck, R. W. Tkach, presented at the European Conference on Optical Communication, Montreux, Switzerland, September 12–16, 1993.
  7. G. P. Agrawal, Nonlinear Fiber Optics (Academic, San Diego, Calif., 1989), Chap. 5, p. 104.
  8. A. Mecozzi, Electron. Lett. 29, 2136 (1993).
    [CrossRef]
  9. N. Shibata, R. P. Braun, R. G. Waarts, IEEE J. Quantum Electron. QE-23, 1205 (1987).
    [CrossRef]
  10. F. Matera, A. Mecozzi, M. Romagnoli, M. Settembre, Opt. Lett. 18, 1499 (1993).
    [CrossRef] [PubMed]
  11. D. Marcuse, Opt. Lett. 17, 34 (1992).
    [CrossRef] [PubMed]

1993

1992

E. Iannone, F. S. Locati, F. Matera, M. Romagnoli, M. Settembre, Electron. Lett. 28, 1902 (1992).
[CrossRef]

D. Marcuse, Opt. Lett. 17, 34 (1992).
[CrossRef] [PubMed]

1991

1990

J. P. Hamaide, P. Emplit, Electron. Lett. 26, 1451 (1990).
[CrossRef]

1987

N. Shibata, R. P. Braun, R. G. Waarts, IEEE J. Quantum Electron. QE-23, 1205 (1987).
[CrossRef]

1986

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics (Academic, San Diego, Calif., 1989), Chap. 5, p. 104.

Braun, R. P.

N. Shibata, R. P. Braun, R. G. Waarts, IEEE J. Quantum Electron. QE-23, 1205 (1987).
[CrossRef]

Emplit, P.

J. P. Hamaide, P. Emplit, Electron. Lett. 26, 1451 (1990).
[CrossRef]

Gnauck, A. H.

A. H. Gnauck, R. W. Tkach, presented at the European Conference on Optical Communication, Montreux, Switzerland, September 12–16, 1993.

Gordon, J. P.

Hamaide, J. P.

J. P. Hamaide, P. Emplit, Electron. Lett. 26, 1451 (1990).
[CrossRef]

Haus, H. A.

Iannone, E.

E. Iannone, F. S. Locati, F. Matera, M. Romagnoli, M. Settembre, Electron. Lett. 28, 1902 (1992).
[CrossRef]

Lai, Y.

Locati, F. S.

E. Iannone, F. S. Locati, F. Matera, M. Romagnoli, M. Settembre, Electron. Lett. 28, 1902 (1992).
[CrossRef]

Marcuse, D.

D. Marcuse, Opt. Lett. 17, 34 (1992).
[CrossRef] [PubMed]

D. Marcuse, J. Lightwave Technol. 9, 356 (1991).
[CrossRef]

Matera, F.

F. Matera, A. Mecozzi, M. Romagnoli, M. Settembre, Opt. Lett. 18, 1499 (1993).
[CrossRef] [PubMed]

E. Iannone, F. S. Locati, F. Matera, M. Romagnoli, M. Settembre, Electron. Lett. 28, 1902 (1992).
[CrossRef]

Mecozzi, A.

Moores, J. D.

Romagnoli, M.

F. Matera, A. Mecozzi, M. Romagnoli, M. Settembre, Opt. Lett. 18, 1499 (1993).
[CrossRef] [PubMed]

E. Iannone, F. S. Locati, F. Matera, M. Romagnoli, M. Settembre, Electron. Lett. 28, 1902 (1992).
[CrossRef]

Settembre, M.

F. Matera, A. Mecozzi, M. Romagnoli, M. Settembre, Opt. Lett. 18, 1499 (1993).
[CrossRef] [PubMed]

E. Iannone, F. S. Locati, F. Matera, M. Romagnoli, M. Settembre, Electron. Lett. 28, 1902 (1992).
[CrossRef]

Shibata, N.

N. Shibata, R. P. Braun, R. G. Waarts, IEEE J. Quantum Electron. QE-23, 1205 (1987).
[CrossRef]

Tkach, R. W.

A. H. Gnauck, R. W. Tkach, presented at the European Conference on Optical Communication, Montreux, Switzerland, September 12–16, 1993.

Waarts, R. G.

N. Shibata, R. P. Braun, R. G. Waarts, IEEE J. Quantum Electron. QE-23, 1205 (1987).
[CrossRef]

Electron. Lett.

J. P. Hamaide, P. Emplit, Electron. Lett. 26, 1451 (1990).
[CrossRef]

E. Iannone, F. S. Locati, F. Matera, M. Romagnoli, M. Settembre, Electron. Lett. 28, 1902 (1992).
[CrossRef]

A. Mecozzi, Electron. Lett. 29, 2136 (1993).
[CrossRef]

IEEE J. Quantum Electron.

N. Shibata, R. P. Braun, R. G. Waarts, IEEE J. Quantum Electron. QE-23, 1205 (1987).
[CrossRef]

J. Lightwave Technol.

D. Marcuse, J. Lightwave Technol. 9, 356 (1991).
[CrossRef]

Opt. Lett.

Other

A. H. Gnauck, R. W. Tkach, presented at the European Conference on Optical Communication, Montreux, Switzerland, September 12–16, 1993.

G. P. Agrawal, Nonlinear Fiber Optics (Academic, San Diego, Calif., 1989), Chap. 5, p. 104.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Input spectrum of (a) an IM and (b) a PM signal with P = 1 mW and R = 6 Gbits/s. The level of the power spectral density of the ASE emitted after each optical amplifier is also shown.

Fig. 2
Fig. 2

Output spectra of the IM signal of Fig. 1(a) after propagation over 9000 km in a link with α = 0.057 km−1, γ =3 (W km)−1, L = 60 km, and β3 = 0.1 ps3/km: (a) β2 = 0.01 ps2/km, (b) β2 = −1 pS2/km.

Fig. 3
Fig. 3

Spectral broadening of (a) an IM and (b) a PM signal versus the normalized frequency 2πRc, after propagation at a bit rate R = 6 Gbits/s over 9000 km, assuming that α = 0.057 km−1, γ = 3 (W km)−1, β3 = 0.1 ps3/km, L = 60 km, and P = 1 mW. The dashed curves refer to the normal dispersion region, and the solid curves refer to the anomalous region. Other data are reported in the text.

Fig. 4
Fig. 4

Eye diagram penalty versus input power for PSK and IM DD systems after propagation in a link with β2 = −1 ps2/km and the other parameters as in Fig. 2. Curves (a) refer to the absence of the ASE, curves (b) refer to the presence of ASE, and curves (c) include the presence of ASE and a fluctuating chromatic dispersion with an average value of −1 ps2/km.

Fig. 5
Fig. 5

Eye diagram penalty versus input power for PSK and IM DD systems after propagation in a link with the same parameters as in Fig. 2 but with a fluctuating chromatic dispersion with an average value of − 1 ps2/km and a link 9000 km long. Optical Fabry–Perot filters were located after each optical amplifier. The dashed curves refer to the absence of the ASE, and the solid curves refer to the presence of ASE. The curve relative to the case of an IM DD soliton system in the presence of ASE is also indicated.

Metrics