Abstract

A new technique is reported for obtaining a wide wavelength conversion range in fiber four-wave mixing. One fiber is cut into short fiber pieces and rearranged, considering the zero-dispersion wavelength of each fiber piece. With this rearrangement, the wavelength conversion range is expanded, compared with that in the original fiber. An experiment using a 6-km fiber confirms the technique.

© 1994 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. O. Hill, D. C. Johnson, B. S. Kawasaki, R. I. MacDonald, J. Appl. Phys. 49, 5098 (1978).
    [CrossRef]
  2. K. Inoue, H. Toba, IEEE Photon. Technol. Lett. 4, 69 (1992).
    [CrossRef]
  3. M. W. Maeda, W. B. Sessa, W. I. Way, A. Yi-Yan, L. Curtis, R. Spicer, R. I. Laming, J. Lightwave Technol. 8, 1402 (1990).
    [CrossRef]
  4. E. Lichtman, J. Opt. Commun. 12, 53 (1991).
    [CrossRef]
  5. K. Inoue, H. Toba, K. Oda, J. Lightwave Technol. 10, 350 (1992)
    [CrossRef]
  6. K. Inoue, J. Lightwave Technol. 10, 1553 (1992).
    [CrossRef]
  7. K. Inoue, Opt. Lett. 17, 801 (1992).
    [CrossRef] [PubMed]

1992 (4)

K. Inoue, H. Toba, IEEE Photon. Technol. Lett. 4, 69 (1992).
[CrossRef]

K. Inoue, H. Toba, K. Oda, J. Lightwave Technol. 10, 350 (1992)
[CrossRef]

K. Inoue, J. Lightwave Technol. 10, 1553 (1992).
[CrossRef]

K. Inoue, Opt. Lett. 17, 801 (1992).
[CrossRef] [PubMed]

1991 (1)

E. Lichtman, J. Opt. Commun. 12, 53 (1991).
[CrossRef]

1990 (1)

M. W. Maeda, W. B. Sessa, W. I. Way, A. Yi-Yan, L. Curtis, R. Spicer, R. I. Laming, J. Lightwave Technol. 8, 1402 (1990).
[CrossRef]

1978 (1)

K. O. Hill, D. C. Johnson, B. S. Kawasaki, R. I. MacDonald, J. Appl. Phys. 49, 5098 (1978).
[CrossRef]

Curtis, L.

M. W. Maeda, W. B. Sessa, W. I. Way, A. Yi-Yan, L. Curtis, R. Spicer, R. I. Laming, J. Lightwave Technol. 8, 1402 (1990).
[CrossRef]

Hill, K. O.

K. O. Hill, D. C. Johnson, B. S. Kawasaki, R. I. MacDonald, J. Appl. Phys. 49, 5098 (1978).
[CrossRef]

Inoue, K.

K. Inoue, H. Toba, K. Oda, J. Lightwave Technol. 10, 350 (1992)
[CrossRef]

K. Inoue, Opt. Lett. 17, 801 (1992).
[CrossRef] [PubMed]

K. Inoue, J. Lightwave Technol. 10, 1553 (1992).
[CrossRef]

K. Inoue, H. Toba, IEEE Photon. Technol. Lett. 4, 69 (1992).
[CrossRef]

Johnson, D. C.

K. O. Hill, D. C. Johnson, B. S. Kawasaki, R. I. MacDonald, J. Appl. Phys. 49, 5098 (1978).
[CrossRef]

Kawasaki, B. S.

K. O. Hill, D. C. Johnson, B. S. Kawasaki, R. I. MacDonald, J. Appl. Phys. 49, 5098 (1978).
[CrossRef]

Laming, R. I.

M. W. Maeda, W. B. Sessa, W. I. Way, A. Yi-Yan, L. Curtis, R. Spicer, R. I. Laming, J. Lightwave Technol. 8, 1402 (1990).
[CrossRef]

Lichtman, E.

E. Lichtman, J. Opt. Commun. 12, 53 (1991).
[CrossRef]

MacDonald, R. I.

K. O. Hill, D. C. Johnson, B. S. Kawasaki, R. I. MacDonald, J. Appl. Phys. 49, 5098 (1978).
[CrossRef]

Maeda, M. W.

M. W. Maeda, W. B. Sessa, W. I. Way, A. Yi-Yan, L. Curtis, R. Spicer, R. I. Laming, J. Lightwave Technol. 8, 1402 (1990).
[CrossRef]

Oda, K.

K. Inoue, H. Toba, K. Oda, J. Lightwave Technol. 10, 350 (1992)
[CrossRef]

Sessa, W. B.

M. W. Maeda, W. B. Sessa, W. I. Way, A. Yi-Yan, L. Curtis, R. Spicer, R. I. Laming, J. Lightwave Technol. 8, 1402 (1990).
[CrossRef]

Spicer, R.

M. W. Maeda, W. B. Sessa, W. I. Way, A. Yi-Yan, L. Curtis, R. Spicer, R. I. Laming, J. Lightwave Technol. 8, 1402 (1990).
[CrossRef]

Toba, H.

K. Inoue, H. Toba, K. Oda, J. Lightwave Technol. 10, 350 (1992)
[CrossRef]

K. Inoue, H. Toba, IEEE Photon. Technol. Lett. 4, 69 (1992).
[CrossRef]

Way, W. I.

M. W. Maeda, W. B. Sessa, W. I. Way, A. Yi-Yan, L. Curtis, R. Spicer, R. I. Laming, J. Lightwave Technol. 8, 1402 (1990).
[CrossRef]

Yi-Yan, A.

M. W. Maeda, W. B. Sessa, W. I. Way, A. Yi-Yan, L. Curtis, R. Spicer, R. I. Laming, J. Lightwave Technol. 8, 1402 (1990).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

K. Inoue, H. Toba, IEEE Photon. Technol. Lett. 4, 69 (1992).
[CrossRef]

J. Appl. Phys. (1)

K. O. Hill, D. C. Johnson, B. S. Kawasaki, R. I. MacDonald, J. Appl. Phys. 49, 5098 (1978).
[CrossRef]

J. Lightwave Technol. (3)

M. W. Maeda, W. B. Sessa, W. I. Way, A. Yi-Yan, L. Curtis, R. Spicer, R. I. Laming, J. Lightwave Technol. 8, 1402 (1990).
[CrossRef]

K. Inoue, H. Toba, K. Oda, J. Lightwave Technol. 10, 350 (1992)
[CrossRef]

K. Inoue, J. Lightwave Technol. 10, 1553 (1992).
[CrossRef]

J. Opt. Commun. (1)

E. Lichtman, J. Opt. Commun. 12, 53 (1991).
[CrossRef]

Opt. Lett. (1)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Calculation examples for FWM efficiency in a 10-km fiber consisting of 1-km fiber pieces with different zero-dispersion frequencies

Fig. 2
Fig. 2

Order of the zero-dispersion frequencies: case 1, the original fiber; case 2, the rearranged fiber.

Fig. 3
Fig. 3

Experimental results: the triangles and circles denote the results for cases 1 and 2, respectively

Tables (1)

Tables Icon

Table 1 Zero-Dispersion Frequencies of Fiber Pieces Used in the Experiment

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

E FWM = A k = 1 M exp [ j = 1 k - 1 ( - α + i Δ β j ) L ] × 1 - exp [ - α + i Δ β k ) L ] α - i Δ β k ,
A = i 2 π ω n c ( D χ ) E p 2 E r * exp { j = 1 M [ - α 2 + i β FWM ( j ) ] L } ,
Δ β k = 2 β p ( k ) - β r ( k ) - β FWM ( k ) .
Δ β k = - λ 4 π c 2 d D c d λ 2 [ f p - f 0 ( k ) ] ( f p - f r ) 2 ,
[ f 0 ( k ) - f av ] + [ f 0 ( k + 1 ) - f av ] = 0 ,
f p = f av ,

Metrics