Abstract

Second-harmonic generation of a semiconductor distributed-feedback laser at 1560 nm is described. It is produced by use of a 4.8-mm-long KNbO3 crystal at room temperature. As much as 2.2 nW of power at 780 nm is obtained for 11.3 mW of fundamental power incident upon the crystal. This signal is used to interrogate a component of the linear absorption profile of the D2 line in 87Rb (780.241 nm) and to produce an error signal used to frequency lock the 1560-nm distributed-feedback laser. Such a system can therefore be a candidate for establishing an absolute wavelength standard at 1560 nm.

© 1994 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. J. E. Knight, K. I. Pharaoh, G. P. Barwood, D. A. Humphreys, Proc. Soc. Photo-Opt. Instrum. Eng. 1837, 115 (1993).
  2. S. Sudo, Y. Sakai, H. Yasaka, T. Ikegami, IEEE Photon. Technol. Lett 1, 281 (1989).
    [CrossRef]
  3. F. Bertinetto, P. Gambini, R. Lano, M. Puleo, IEEE Photon. Technol Lett. 4, 472 (1993).
    [CrossRef]
  4. Y. C. Chung, C. B. Roxlo, Electron. Lett. 24, 1048 (1988).
    [CrossRef]
  5. M. Ohtsu, E. Ikegami, Electron. Lett. 25, 22 (1989).
    [CrossRef]
  6. A. Hemmerich, C. Zimmermann, T. W. Hänsch, Appl. Opt. 33, 988 (1994).
    [CrossRef] [PubMed]
  7. L. E. Busse, L. Goldberg, D. Mehuys, G. Mizell, Electron. Lett. 29, 77 (1993).
    [CrossRef]
  8. W. P. Risk, R. Pon, W. Lenth, Appl. Phys. Lett. 54, 1625 (1989).
    [CrossRef]
  9. G. P. Barwood, P. Gill, W. R. C. Rowley, Appl. Phys. B 53, 142 (1991).
    [CrossRef]
  10. M. Têtu, N. Cyr, B. Villeneuve, S. Thêriault, M. Breton, P. Tremblay, IEEE Trans. Instrum. Meas. 40, 191 (1991).
    [CrossRef]
  11. Y. Millerioux, Institut National de Métrologie, 75141 Paris Cedex 03, France (personal communication, 1994).
  12. B. Villeneuve, “Caractérisation par hétérodyne optique de diodes laser asservies sur des résonances atomiques,” Ph.D. dissertation (Department of Electrical Engineering, Université Laval, Québec, Canada, 1990), Chap. 3, p. 81.
  13. G. J. Dixon, C. E. Tanner, C. E. Wieman, Opt. Lett. 14, 731 (1989).
    [CrossRef] [PubMed]
  14. Y. Millerioux, D. Touahri, L. Hilico, A. Clairon, R. Felder, F. Biraben, B. de Beauvoir, “Toward an accurate frequency standard at λ = 778 nm using a laser diode stabilized on a hyperfine component of the Doppler-free two-photon transitions in rubidium,” Opt. Commun. (to be published).

1994 (1)

1993 (3)

D. J. E. Knight, K. I. Pharaoh, G. P. Barwood, D. A. Humphreys, Proc. Soc. Photo-Opt. Instrum. Eng. 1837, 115 (1993).

F. Bertinetto, P. Gambini, R. Lano, M. Puleo, IEEE Photon. Technol Lett. 4, 472 (1993).
[CrossRef]

L. E. Busse, L. Goldberg, D. Mehuys, G. Mizell, Electron. Lett. 29, 77 (1993).
[CrossRef]

1991 (2)

G. P. Barwood, P. Gill, W. R. C. Rowley, Appl. Phys. B 53, 142 (1991).
[CrossRef]

M. Têtu, N. Cyr, B. Villeneuve, S. Thêriault, M. Breton, P. Tremblay, IEEE Trans. Instrum. Meas. 40, 191 (1991).
[CrossRef]

1989 (4)

G. J. Dixon, C. E. Tanner, C. E. Wieman, Opt. Lett. 14, 731 (1989).
[CrossRef] [PubMed]

W. P. Risk, R. Pon, W. Lenth, Appl. Phys. Lett. 54, 1625 (1989).
[CrossRef]

S. Sudo, Y. Sakai, H. Yasaka, T. Ikegami, IEEE Photon. Technol. Lett 1, 281 (1989).
[CrossRef]

M. Ohtsu, E. Ikegami, Electron. Lett. 25, 22 (1989).
[CrossRef]

1988 (1)

Y. C. Chung, C. B. Roxlo, Electron. Lett. 24, 1048 (1988).
[CrossRef]

Barwood, G. P.

D. J. E. Knight, K. I. Pharaoh, G. P. Barwood, D. A. Humphreys, Proc. Soc. Photo-Opt. Instrum. Eng. 1837, 115 (1993).

G. P. Barwood, P. Gill, W. R. C. Rowley, Appl. Phys. B 53, 142 (1991).
[CrossRef]

Bertinetto, F.

F. Bertinetto, P. Gambini, R. Lano, M. Puleo, IEEE Photon. Technol Lett. 4, 472 (1993).
[CrossRef]

Biraben, F.

Y. Millerioux, D. Touahri, L. Hilico, A. Clairon, R. Felder, F. Biraben, B. de Beauvoir, “Toward an accurate frequency standard at λ = 778 nm using a laser diode stabilized on a hyperfine component of the Doppler-free two-photon transitions in rubidium,” Opt. Commun. (to be published).

Breton, M.

M. Têtu, N. Cyr, B. Villeneuve, S. Thêriault, M. Breton, P. Tremblay, IEEE Trans. Instrum. Meas. 40, 191 (1991).
[CrossRef]

Busse, L. E.

L. E. Busse, L. Goldberg, D. Mehuys, G. Mizell, Electron. Lett. 29, 77 (1993).
[CrossRef]

Chung, Y. C.

Y. C. Chung, C. B. Roxlo, Electron. Lett. 24, 1048 (1988).
[CrossRef]

Clairon, A.

Y. Millerioux, D. Touahri, L. Hilico, A. Clairon, R. Felder, F. Biraben, B. de Beauvoir, “Toward an accurate frequency standard at λ = 778 nm using a laser diode stabilized on a hyperfine component of the Doppler-free two-photon transitions in rubidium,” Opt. Commun. (to be published).

Cyr, N.

M. Têtu, N. Cyr, B. Villeneuve, S. Thêriault, M. Breton, P. Tremblay, IEEE Trans. Instrum. Meas. 40, 191 (1991).
[CrossRef]

de Beauvoir, B.

Y. Millerioux, D. Touahri, L. Hilico, A. Clairon, R. Felder, F. Biraben, B. de Beauvoir, “Toward an accurate frequency standard at λ = 778 nm using a laser diode stabilized on a hyperfine component of the Doppler-free two-photon transitions in rubidium,” Opt. Commun. (to be published).

Dixon, G. J.

Felder, R.

Y. Millerioux, D. Touahri, L. Hilico, A. Clairon, R. Felder, F. Biraben, B. de Beauvoir, “Toward an accurate frequency standard at λ = 778 nm using a laser diode stabilized on a hyperfine component of the Doppler-free two-photon transitions in rubidium,” Opt. Commun. (to be published).

Gambini, P.

F. Bertinetto, P. Gambini, R. Lano, M. Puleo, IEEE Photon. Technol Lett. 4, 472 (1993).
[CrossRef]

Gill, P.

G. P. Barwood, P. Gill, W. R. C. Rowley, Appl. Phys. B 53, 142 (1991).
[CrossRef]

Goldberg, L.

L. E. Busse, L. Goldberg, D. Mehuys, G. Mizell, Electron. Lett. 29, 77 (1993).
[CrossRef]

Hänsch, T. W.

Hemmerich, A.

Hilico, L.

Y. Millerioux, D. Touahri, L. Hilico, A. Clairon, R. Felder, F. Biraben, B. de Beauvoir, “Toward an accurate frequency standard at λ = 778 nm using a laser diode stabilized on a hyperfine component of the Doppler-free two-photon transitions in rubidium,” Opt. Commun. (to be published).

Humphreys, D. A.

D. J. E. Knight, K. I. Pharaoh, G. P. Barwood, D. A. Humphreys, Proc. Soc. Photo-Opt. Instrum. Eng. 1837, 115 (1993).

Ikegami, E.

M. Ohtsu, E. Ikegami, Electron. Lett. 25, 22 (1989).
[CrossRef]

Ikegami, T.

S. Sudo, Y. Sakai, H. Yasaka, T. Ikegami, IEEE Photon. Technol. Lett 1, 281 (1989).
[CrossRef]

Knight, D. J. E.

D. J. E. Knight, K. I. Pharaoh, G. P. Barwood, D. A. Humphreys, Proc. Soc. Photo-Opt. Instrum. Eng. 1837, 115 (1993).

Lano, R.

F. Bertinetto, P. Gambini, R. Lano, M. Puleo, IEEE Photon. Technol Lett. 4, 472 (1993).
[CrossRef]

Lenth, W.

W. P. Risk, R. Pon, W. Lenth, Appl. Phys. Lett. 54, 1625 (1989).
[CrossRef]

Mehuys, D.

L. E. Busse, L. Goldberg, D. Mehuys, G. Mizell, Electron. Lett. 29, 77 (1993).
[CrossRef]

Millerioux, Y.

Y. Millerioux, D. Touahri, L. Hilico, A. Clairon, R. Felder, F. Biraben, B. de Beauvoir, “Toward an accurate frequency standard at λ = 778 nm using a laser diode stabilized on a hyperfine component of the Doppler-free two-photon transitions in rubidium,” Opt. Commun. (to be published).

Y. Millerioux, Institut National de Métrologie, 75141 Paris Cedex 03, France (personal communication, 1994).

Mizell, G.

L. E. Busse, L. Goldberg, D. Mehuys, G. Mizell, Electron. Lett. 29, 77 (1993).
[CrossRef]

Ohtsu, M.

M. Ohtsu, E. Ikegami, Electron. Lett. 25, 22 (1989).
[CrossRef]

Pharaoh, K. I.

D. J. E. Knight, K. I. Pharaoh, G. P. Barwood, D. A. Humphreys, Proc. Soc. Photo-Opt. Instrum. Eng. 1837, 115 (1993).

Pon, R.

W. P. Risk, R. Pon, W. Lenth, Appl. Phys. Lett. 54, 1625 (1989).
[CrossRef]

Puleo, M.

F. Bertinetto, P. Gambini, R. Lano, M. Puleo, IEEE Photon. Technol Lett. 4, 472 (1993).
[CrossRef]

Risk, W. P.

W. P. Risk, R. Pon, W. Lenth, Appl. Phys. Lett. 54, 1625 (1989).
[CrossRef]

Rowley, W. R. C.

G. P. Barwood, P. Gill, W. R. C. Rowley, Appl. Phys. B 53, 142 (1991).
[CrossRef]

Roxlo, C. B.

Y. C. Chung, C. B. Roxlo, Electron. Lett. 24, 1048 (1988).
[CrossRef]

Sakai, Y.

S. Sudo, Y. Sakai, H. Yasaka, T. Ikegami, IEEE Photon. Technol. Lett 1, 281 (1989).
[CrossRef]

Sudo, S.

S. Sudo, Y. Sakai, H. Yasaka, T. Ikegami, IEEE Photon. Technol. Lett 1, 281 (1989).
[CrossRef]

Tanner, C. E.

Têtu, M.

M. Têtu, N. Cyr, B. Villeneuve, S. Thêriault, M. Breton, P. Tremblay, IEEE Trans. Instrum. Meas. 40, 191 (1991).
[CrossRef]

Thêriault, S.

M. Têtu, N. Cyr, B. Villeneuve, S. Thêriault, M. Breton, P. Tremblay, IEEE Trans. Instrum. Meas. 40, 191 (1991).
[CrossRef]

Touahri, D.

Y. Millerioux, D. Touahri, L. Hilico, A. Clairon, R. Felder, F. Biraben, B. de Beauvoir, “Toward an accurate frequency standard at λ = 778 nm using a laser diode stabilized on a hyperfine component of the Doppler-free two-photon transitions in rubidium,” Opt. Commun. (to be published).

Tremblay, P.

M. Têtu, N. Cyr, B. Villeneuve, S. Thêriault, M. Breton, P. Tremblay, IEEE Trans. Instrum. Meas. 40, 191 (1991).
[CrossRef]

Villeneuve, B.

M. Têtu, N. Cyr, B. Villeneuve, S. Thêriault, M. Breton, P. Tremblay, IEEE Trans. Instrum. Meas. 40, 191 (1991).
[CrossRef]

B. Villeneuve, “Caractérisation par hétérodyne optique de diodes laser asservies sur des résonances atomiques,” Ph.D. dissertation (Department of Electrical Engineering, Université Laval, Québec, Canada, 1990), Chap. 3, p. 81.

Wieman, C. E.

Yasaka, H.

S. Sudo, Y. Sakai, H. Yasaka, T. Ikegami, IEEE Photon. Technol. Lett 1, 281 (1989).
[CrossRef]

Zimmermann, C.

Appl. Opt. (1)

Appl. Phys. B (1)

G. P. Barwood, P. Gill, W. R. C. Rowley, Appl. Phys. B 53, 142 (1991).
[CrossRef]

Appl. Phys. Lett. (1)

W. P. Risk, R. Pon, W. Lenth, Appl. Phys. Lett. 54, 1625 (1989).
[CrossRef]

Electron. Lett. (3)

Y. C. Chung, C. B. Roxlo, Electron. Lett. 24, 1048 (1988).
[CrossRef]

M. Ohtsu, E. Ikegami, Electron. Lett. 25, 22 (1989).
[CrossRef]

L. E. Busse, L. Goldberg, D. Mehuys, G. Mizell, Electron. Lett. 29, 77 (1993).
[CrossRef]

IEEE Photon. Technol Lett. (1)

F. Bertinetto, P. Gambini, R. Lano, M. Puleo, IEEE Photon. Technol Lett. 4, 472 (1993).
[CrossRef]

IEEE Photon. Technol. Lett (1)

S. Sudo, Y. Sakai, H. Yasaka, T. Ikegami, IEEE Photon. Technol. Lett 1, 281 (1989).
[CrossRef]

IEEE Trans. Instrum. Meas. (1)

M. Têtu, N. Cyr, B. Villeneuve, S. Thêriault, M. Breton, P. Tremblay, IEEE Trans. Instrum. Meas. 40, 191 (1991).
[CrossRef]

Opt. Lett. (1)

Proc. Soc. Photo-Opt. Instrum. Eng. (1)

D. J. E. Knight, K. I. Pharaoh, G. P. Barwood, D. A. Humphreys, Proc. Soc. Photo-Opt. Instrum. Eng. 1837, 115 (1993).

Other (3)

Y. Millerioux, Institut National de Métrologie, 75141 Paris Cedex 03, France (personal communication, 1994).

B. Villeneuve, “Caractérisation par hétérodyne optique de diodes laser asservies sur des résonances atomiques,” Ph.D. dissertation (Department of Electrical Engineering, Université Laval, Québec, Canada, 1990), Chap. 3, p. 81.

Y. Millerioux, D. Touahri, L. Hilico, A. Clairon, R. Felder, F. Biraben, B. de Beauvoir, “Toward an accurate frequency standard at λ = 778 nm using a laser diode stabilized on a hyperfine component of the Doppler-free two-photon transitions in rubidium,” Opt. Commun. (to be published).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Experimental setup used to measure the SHG efficiency of a KNbO3 crystal for a DFB laser operated at 1560 nm.

Fig. 2
Fig. 2

Second-harmonic power at 780 nm as a function of the fundamental power at 1560 nm.

Fig. 3
Fig. 3

Frequency stabilization setup. ISO, 70-dB isolator; OSC, reference oscillator; P+I, proportional and integrator amplifier; ∑, adder; PD, photodiode.

Fig. 4
Fig. 4

Absorption profiles (upper curve) and error signals (lower curve) of the D2 lines 87A and 87B of 87Rb.

Fig. 5
Fig. 5

Evolution of the DFB laser error signal under free-running and frequency-locked conditions.

Metrics