Abstract

Broadband hollow glass waveguides have been fabricated with losses as low as 0.15 dB/m at 10.6 μm. We make these hollow glass waveguides by coating the inside of polyimide-coated silica-glass tubing with a metallic layer followed by a thin dielectric coating of a metal halide. The bore sizes of the guides range from 320 to 700 μm, and we have made lengths as long as 3 m. The bending radii of the waveguides are less than 5 cm for bore sizes less than 500 μm. We have used these waveguides to deliver greater than 80 W of CO2 laser power and 5 W of Er:YAG laser power. The hollow glass guides are inexpensive, robust, and quite flexible and therefore a good infrared fiber for power and sensor applications.

© 1994 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. A. Harrington, Selected Papers on Infrared Fiber Optics, Vol. 9 of Milestone Series (Society of Photo-Optical and Instrumentation Engineers, Bellingham, Wash., 1990).
  2. S. J. Saggese, J. A. Harrington, G. H. Sigel, Opt. Lett. 16, 27 (1991).
    [CrossRef] [PubMed]
  3. M. Saito, Y. Matsuura, M. Kawamura, M. Miyagi, J. Opt. Soc. Am. A 7, 2063 (1990).
    [CrossRef]
  4. Y. Matsuura, M. Miyagi, Appl. Opt. 31, 6441 (1992).
    [CrossRef] [PubMed]
  5. J. A. Harrington, C. C. Gregory, Opt. Lett. 15, 541 (1990).
    [CrossRef] [PubMed]
  6. K. Laakman, M. Levy, U.S. patent5,005,944 (April9, 1991).
  7. M. Miyagi, Y. Shimada, S. Nishida, Opt. Laser Technol. 17, 197 (1985).
    [CrossRef]
  8. N. Croitoru, J. Dror, I. Gannot, Appl. Opt. 29, 1805 (1990).
    [CrossRef] [PubMed]
  9. Y. Matsuura, M. Miyagi, Appl. Opt. 32, 6598 (1993).
    [CrossRef] [PubMed]
  10. J. W. Carlin, P. D’Agostino, Bell Syst. Tech. J. 50, 1631 (1971).
  11. M. Miyagi, S. Kawakami, J. Lightwave Technol. LT-2, 116 (1984).
    [CrossRef]
  12. J. W. Carlin, Bell Syst. Tech. J. 50, 1639 (1971).
  13. H. G. Unger, Bell Syst. Tech. J. 36, 1253 (1957).
  14. Y. Matsuura, M. Saito, M. Miyagi, J. Opt. Soc. Am. A 6, 423 (1989).
    [CrossRef]
  15. M. Miyagi, H. Kazuhide, Y. Aizawa, S. Kawakami, Proc. Soc. Photo-Opt. Instrum. Eng. 484, 117 (1984).

1993 (1)

1992 (1)

1991 (1)

1990 (3)

1989 (1)

1985 (1)

M. Miyagi, Y. Shimada, S. Nishida, Opt. Laser Technol. 17, 197 (1985).
[CrossRef]

1984 (2)

M. Miyagi, H. Kazuhide, Y. Aizawa, S. Kawakami, Proc. Soc. Photo-Opt. Instrum. Eng. 484, 117 (1984).

M. Miyagi, S. Kawakami, J. Lightwave Technol. LT-2, 116 (1984).
[CrossRef]

1971 (2)

J. W. Carlin, Bell Syst. Tech. J. 50, 1639 (1971).

J. W. Carlin, P. D’Agostino, Bell Syst. Tech. J. 50, 1631 (1971).

1957 (1)

H. G. Unger, Bell Syst. Tech. J. 36, 1253 (1957).

Aizawa, Y.

M. Miyagi, H. Kazuhide, Y. Aizawa, S. Kawakami, Proc. Soc. Photo-Opt. Instrum. Eng. 484, 117 (1984).

Carlin, J. W.

J. W. Carlin, P. D’Agostino, Bell Syst. Tech. J. 50, 1631 (1971).

J. W. Carlin, Bell Syst. Tech. J. 50, 1639 (1971).

Croitoru, N.

D’Agostino, P.

J. W. Carlin, P. D’Agostino, Bell Syst. Tech. J. 50, 1631 (1971).

Dror, J.

Gannot, I.

Gregory, C. C.

Harrington, J. A.

S. J. Saggese, J. A. Harrington, G. H. Sigel, Opt. Lett. 16, 27 (1991).
[CrossRef] [PubMed]

J. A. Harrington, C. C. Gregory, Opt. Lett. 15, 541 (1990).
[CrossRef] [PubMed]

J. A. Harrington, Selected Papers on Infrared Fiber Optics, Vol. 9 of Milestone Series (Society of Photo-Optical and Instrumentation Engineers, Bellingham, Wash., 1990).

Kawakami, S.

M. Miyagi, H. Kazuhide, Y. Aizawa, S. Kawakami, Proc. Soc. Photo-Opt. Instrum. Eng. 484, 117 (1984).

M. Miyagi, S. Kawakami, J. Lightwave Technol. LT-2, 116 (1984).
[CrossRef]

Kawamura, M.

Kazuhide, H.

M. Miyagi, H. Kazuhide, Y. Aizawa, S. Kawakami, Proc. Soc. Photo-Opt. Instrum. Eng. 484, 117 (1984).

Laakman, K.

K. Laakman, M. Levy, U.S. patent5,005,944 (April9, 1991).

Levy, M.

K. Laakman, M. Levy, U.S. patent5,005,944 (April9, 1991).

Matsuura, Y.

Miyagi, M.

Y. Matsuura, M. Miyagi, Appl. Opt. 32, 6598 (1993).
[CrossRef] [PubMed]

Y. Matsuura, M. Miyagi, Appl. Opt. 31, 6441 (1992).
[CrossRef] [PubMed]

M. Saito, Y. Matsuura, M. Kawamura, M. Miyagi, J. Opt. Soc. Am. A 7, 2063 (1990).
[CrossRef]

Y. Matsuura, M. Saito, M. Miyagi, J. Opt. Soc. Am. A 6, 423 (1989).
[CrossRef]

M. Miyagi, Y. Shimada, S. Nishida, Opt. Laser Technol. 17, 197 (1985).
[CrossRef]

M. Miyagi, S. Kawakami, J. Lightwave Technol. LT-2, 116 (1984).
[CrossRef]

M. Miyagi, H. Kazuhide, Y. Aizawa, S. Kawakami, Proc. Soc. Photo-Opt. Instrum. Eng. 484, 117 (1984).

Nishida, S.

M. Miyagi, Y. Shimada, S. Nishida, Opt. Laser Technol. 17, 197 (1985).
[CrossRef]

Saggese, S. J.

Saito, M.

Shimada, Y.

M. Miyagi, Y. Shimada, S. Nishida, Opt. Laser Technol. 17, 197 (1985).
[CrossRef]

Sigel, G. H.

Unger, H. G.

H. G. Unger, Bell Syst. Tech. J. 36, 1253 (1957).

Appl. Opt. (3)

Bell Syst. Tech. J. (3)

J. W. Carlin, Bell Syst. Tech. J. 50, 1639 (1971).

H. G. Unger, Bell Syst. Tech. J. 36, 1253 (1957).

J. W. Carlin, P. D’Agostino, Bell Syst. Tech. J. 50, 1631 (1971).

J. Lightwave Technol. (1)

M. Miyagi, S. Kawakami, J. Lightwave Technol. LT-2, 116 (1984).
[CrossRef]

J. Opt. Soc. Am. A (2)

Opt. Laser Technol. (1)

M. Miyagi, Y. Shimada, S. Nishida, Opt. Laser Technol. 17, 197 (1985).
[CrossRef]

Opt. Lett. (2)

Proc. Soc. Photo-Opt. Instrum. Eng. (1)

M. Miyagi, H. Kazuhide, Y. Aizawa, S. Kawakami, Proc. Soc. Photo-Opt. Instrum. Eng. 484, 117 (1984).

Other (2)

J. A. Harrington, Selected Papers on Infrared Fiber Optics, Vol. 9 of Milestone Series (Society of Photo-Optical and Instrumentation Engineers, Bellingham, Wash., 1990).

K. Laakman, M. Levy, U.S. patent5,005,944 (April9, 1991).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Spectral loss for a thick (solid curve) and a thin (dashed curve) AgI film formed over a Ag layer deposited in a 700-μm-bore glass waveguide.

Fig. 2
Fig. 2

Calculated (solid curve) and measured (filled squares) values of attenuation in straight hollow glass waveguides at 10.6 μm.

Fig. 3
Fig. 3

Bending loss at 10.6 μm for 320- (filled circles), 530- (filled squares), and 700-μm-bore (filled diamonds) hollow glass waveguides.

Fig. 4
Fig. 4

Dependence of bending loss at 10.6 μm on polarization of light polarized parallel (solid curve) and perpendicular (dashed curves) to the plane of bending for 320- (filled circles) and 530-μm-bore (filled diamonds) waveguides.

Fig. 5
Fig. 5

Bending loss at 2.94 μm for 320- (filled circles), 530- (filled squares), and 700-μm-bore (filled diamonds) hollow glass waveguides.

Fig. 6
Fig. 6

Spatial output beam profile for bent (a) 320- and (b) 700-μm-bore glass waveguides measured by use of a TEM00 CO2 laser beam as input.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

α = ( U 0 2 π ) 2 λ 2 a 3 ( n n 2 + k 2 ) metal F film ,

Metrics