Abstract

We report on the application of tunable, pulsed Ti:sapphire lasers as efficient pump sources for optical parametric oscillators. Using a 90-deg phase-matched KTP crystal, we have generated output from 1030 to 1280 nm (signal) and 2180 to 3030 nm (idler) by tuning the pump laser from 700 to 900 nm, with 49 mJ of combined signal and idler output energy at a pump level of 110 mJ. In addition, we have demonstrated degenerate optical parametric oscillator operation with a KNbO3 crystal over the pump range of 720–818 nm and observed a 44% conversion efficiency.

© 1994 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. We use the phrase “optical” parametric oscillator by tradition, even through none of the wavelengths involved is visible.
  2. R. W. Wallace, IEEE J. Quantum Electron. QE-8, 819 (1972).
    [CrossRef]
  3. K. Kato, M. Masutani, Opt. Lett. 17, 178 (1992).
    [CrossRef] [PubMed]
  4. M. G. Jani, J. T. Murray, R. R. Petrin, R. C. Powell, D. N. Loiacono, G. M. Loiacono, Appl. Phys. Lett. 60, 2327 (1992).
    [CrossRef]
  5. G. Rines, P. F. Moulton, Opt. Lett. 15, 434 (1990).
    [CrossRef] [PubMed]
  6. The nomenclature that we use is consistent with that in Refs. 6–9 but is not the standard proposed inD. A. Roberts, IEEE J. Quantum Electron. 28, 2057 (1992). For a discussion of the standard with relation of KNbO3, seeW. R. Bosenberg, R. H. Jarman, Opt. Lett. 18, 1323 (1993).
    [CrossRef] [PubMed]
  7. D. R. Guyer, W. R. Bosenberg, F. D. Braun, Proc. Soc. Photo-Opt. Instrum. Eng. 1409, 14 (1991).
  8. K. Kato, IEEE J. Quantum Electron. QE-18, 451 (1982).
    [CrossRef]
  9. I. Biaggio, P. Kerkoc, L.-S. Wu, P. Günter, B. Zysset, J. Opt. Soc. Am. B 9, 507 (1992).
    [CrossRef]
  10. B. Zysset, I. Biaggio, P. Günter, J. Opt. Soc. Am. B 9, 380 (1992).
    [CrossRef]
  11. S. J. Brosnan, R. L. Byer, IEEE J. Quantum Electron. QE-15, 415 (1979).
    [CrossRef]
  12. R. C. Miller, Appl. Phys. Lett. 5, 17 (1964).
    [CrossRef]
  13. H. Vanherzeele, J. D. Bierlein, Opt. Lett. 17, 982 (1992).
    [CrossRef] [PubMed]

1992 (6)

K. Kato, M. Masutani, Opt. Lett. 17, 178 (1992).
[CrossRef] [PubMed]

M. G. Jani, J. T. Murray, R. R. Petrin, R. C. Powell, D. N. Loiacono, G. M. Loiacono, Appl. Phys. Lett. 60, 2327 (1992).
[CrossRef]

The nomenclature that we use is consistent with that in Refs. 6–9 but is not the standard proposed inD. A. Roberts, IEEE J. Quantum Electron. 28, 2057 (1992). For a discussion of the standard with relation of KNbO3, seeW. R. Bosenberg, R. H. Jarman, Opt. Lett. 18, 1323 (1993).
[CrossRef] [PubMed]

I. Biaggio, P. Kerkoc, L.-S. Wu, P. Günter, B. Zysset, J. Opt. Soc. Am. B 9, 507 (1992).
[CrossRef]

B. Zysset, I. Biaggio, P. Günter, J. Opt. Soc. Am. B 9, 380 (1992).
[CrossRef]

H. Vanherzeele, J. D. Bierlein, Opt. Lett. 17, 982 (1992).
[CrossRef] [PubMed]

1991 (1)

D. R. Guyer, W. R. Bosenberg, F. D. Braun, Proc. Soc. Photo-Opt. Instrum. Eng. 1409, 14 (1991).

1990 (1)

1982 (1)

K. Kato, IEEE J. Quantum Electron. QE-18, 451 (1982).
[CrossRef]

1979 (1)

S. J. Brosnan, R. L. Byer, IEEE J. Quantum Electron. QE-15, 415 (1979).
[CrossRef]

1972 (1)

R. W. Wallace, IEEE J. Quantum Electron. QE-8, 819 (1972).
[CrossRef]

1964 (1)

R. C. Miller, Appl. Phys. Lett. 5, 17 (1964).
[CrossRef]

Biaggio, I.

Bierlein, J. D.

Bosenberg, W. R.

D. R. Guyer, W. R. Bosenberg, F. D. Braun, Proc. Soc. Photo-Opt. Instrum. Eng. 1409, 14 (1991).

Braun, F. D.

D. R. Guyer, W. R. Bosenberg, F. D. Braun, Proc. Soc. Photo-Opt. Instrum. Eng. 1409, 14 (1991).

Brosnan, S. J.

S. J. Brosnan, R. L. Byer, IEEE J. Quantum Electron. QE-15, 415 (1979).
[CrossRef]

Byer, R. L.

S. J. Brosnan, R. L. Byer, IEEE J. Quantum Electron. QE-15, 415 (1979).
[CrossRef]

Günter, P.

Guyer, D. R.

D. R. Guyer, W. R. Bosenberg, F. D. Braun, Proc. Soc. Photo-Opt. Instrum. Eng. 1409, 14 (1991).

Jani, M. G.

M. G. Jani, J. T. Murray, R. R. Petrin, R. C. Powell, D. N. Loiacono, G. M. Loiacono, Appl. Phys. Lett. 60, 2327 (1992).
[CrossRef]

Kato, K.

K. Kato, M. Masutani, Opt. Lett. 17, 178 (1992).
[CrossRef] [PubMed]

K. Kato, IEEE J. Quantum Electron. QE-18, 451 (1982).
[CrossRef]

Kerkoc, P.

Loiacono, D. N.

M. G. Jani, J. T. Murray, R. R. Petrin, R. C. Powell, D. N. Loiacono, G. M. Loiacono, Appl. Phys. Lett. 60, 2327 (1992).
[CrossRef]

Loiacono, G. M.

M. G. Jani, J. T. Murray, R. R. Petrin, R. C. Powell, D. N. Loiacono, G. M. Loiacono, Appl. Phys. Lett. 60, 2327 (1992).
[CrossRef]

Masutani, M.

Miller, R. C.

R. C. Miller, Appl. Phys. Lett. 5, 17 (1964).
[CrossRef]

Moulton, P. F.

Murray, J. T.

M. G. Jani, J. T. Murray, R. R. Petrin, R. C. Powell, D. N. Loiacono, G. M. Loiacono, Appl. Phys. Lett. 60, 2327 (1992).
[CrossRef]

Petrin, R. R.

M. G. Jani, J. T. Murray, R. R. Petrin, R. C. Powell, D. N. Loiacono, G. M. Loiacono, Appl. Phys. Lett. 60, 2327 (1992).
[CrossRef]

Powell, R. C.

M. G. Jani, J. T. Murray, R. R. Petrin, R. C. Powell, D. N. Loiacono, G. M. Loiacono, Appl. Phys. Lett. 60, 2327 (1992).
[CrossRef]

Rines, G.

Roberts, D. A.

The nomenclature that we use is consistent with that in Refs. 6–9 but is not the standard proposed inD. A. Roberts, IEEE J. Quantum Electron. 28, 2057 (1992). For a discussion of the standard with relation of KNbO3, seeW. R. Bosenberg, R. H. Jarman, Opt. Lett. 18, 1323 (1993).
[CrossRef] [PubMed]

Vanherzeele, H.

Wallace, R. W.

R. W. Wallace, IEEE J. Quantum Electron. QE-8, 819 (1972).
[CrossRef]

Wu, L.-S.

Zysset, B.

Appl. Phys. Lett. (2)

M. G. Jani, J. T. Murray, R. R. Petrin, R. C. Powell, D. N. Loiacono, G. M. Loiacono, Appl. Phys. Lett. 60, 2327 (1992).
[CrossRef]

R. C. Miller, Appl. Phys. Lett. 5, 17 (1964).
[CrossRef]

IEEE J. Quantum Electron. (4)

S. J. Brosnan, R. L. Byer, IEEE J. Quantum Electron. QE-15, 415 (1979).
[CrossRef]

R. W. Wallace, IEEE J. Quantum Electron. QE-8, 819 (1972).
[CrossRef]

The nomenclature that we use is consistent with that in Refs. 6–9 but is not the standard proposed inD. A. Roberts, IEEE J. Quantum Electron. 28, 2057 (1992). For a discussion of the standard with relation of KNbO3, seeW. R. Bosenberg, R. H. Jarman, Opt. Lett. 18, 1323 (1993).
[CrossRef] [PubMed]

K. Kato, IEEE J. Quantum Electron. QE-18, 451 (1982).
[CrossRef]

J. Opt. Soc. Am. B (2)

Opt. Lett. (3)

Proc. Soc. Photo-Opt. Instrum. Eng. (1)

D. R. Guyer, W. R. Bosenberg, F. D. Braun, Proc. Soc. Photo-Opt. Instrum. Eng. 1409, 14 (1991).

Other (1)

We use the phrase “optical” parametric oscillator by tradition, even through none of the wavelengths involved is visible.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Measured KTP OPO signal wavelength as a function of Ti:sapphire pump wavelength (data points with solid curve) compared with theory (dotted curve).

Fig. 2
Fig. 2

Total KTP and KNbO3 OPO output energies as functions of pump energy. The straight lines are least-squares fits to the data points. The pump, signal, and idler wavelengths were 760, 1089, and 2515 nm, respectively, for the KTP device, while the KNbO3 OPO was set for degenerate operation at a pump wavelength of 787 nm.

Fig. 3
Fig. 3

KTP OPO pump (solid curve) and signal (dashed curve) waveforms at 90 mJ of pump energy. The pump and signal wavelengths were 760 and 1089 nm, respectively.

Tables (1)

Tables Icon

Table 1 Parameters for OPO Threshold Calculations

Metrics