Abstract

We show that a self-guided beam in a nonlinear planar film can be split, switched, or deflected in a controlled manner by use of another self-guided beam of a different frequency. The new phenomena are power dependent and are potentially attractive for all-optical photonic device applications.

© 1994 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. S. Aitchison, Y. Silberberg, A. M. Weiner, D. E. Leaird, M. K. Oliver, J. L. Jackel, E. M. Vogel, P. W. E. Smith, J. Opt. Soc. Am. B 8, 1290 (1991).
    [CrossRef]
  2. F. Reynaud, A. Barthelemy, in Guided-Wave Nonlinear Optics, D. B. Ostrowsky, R. Reinisch, eds. (Kluwer, Dordrecht, The Netherlands, 1992), pp. 319–340, and references therein.
  3. M. Shalaby, F. Reynaud, A. Barthelemy, Opt. Lett. 17, 778 (1992).
    [CrossRef] [PubMed]
  4. R. de la Fuente, A. Barthelemy, IEEE J. Quantum Electron. 28, 547 (1992).
    [CrossRef]
  5. B. Luther-Davies, Y. Xiaoping, Opt. Lett. 17, 496 (1992).
    [CrossRef] [PubMed]
  6. J. S. Aitchison, A. M. Weiner, Y. Silberberg, M. K. Oliver, J. L. Jackel, D. E. Leaird, E. M. Vogel, P. W. E. Smith, Opt. Lett. 15, 471 (1990).
    [CrossRef] [PubMed]
  7. R. A. Sammut, C. Pask, Q. Y. Li, J. Opt. Soc. Am. B 10, 485 (1993).
    [CrossRef]
  8. The effect of dispersion could be included by redefining η as the ratio of k(nLn2)1/2 at ω2 to that at ω1.
  9. R. de la Fuente, A. Barthelemy, Opt. Commun. 88, 419 (1992).
    [CrossRef]
  10. R. Scarmozzino, R. M. Osgood, J. Opt. Soc. Am. A 8, 724 (1991).
    [CrossRef]
  11. M. N. Islam, Opt. Lett. 15, 417 (1990).
    [CrossRef] [PubMed]

1993 (1)

1992 (4)

R. de la Fuente, A. Barthelemy, Opt. Commun. 88, 419 (1992).
[CrossRef]

M. Shalaby, F. Reynaud, A. Barthelemy, Opt. Lett. 17, 778 (1992).
[CrossRef] [PubMed]

R. de la Fuente, A. Barthelemy, IEEE J. Quantum Electron. 28, 547 (1992).
[CrossRef]

B. Luther-Davies, Y. Xiaoping, Opt. Lett. 17, 496 (1992).
[CrossRef] [PubMed]

1991 (2)

1990 (2)

Aitchison, J. S.

Barthelemy, A.

R. de la Fuente, A. Barthelemy, IEEE J. Quantum Electron. 28, 547 (1992).
[CrossRef]

M. Shalaby, F. Reynaud, A. Barthelemy, Opt. Lett. 17, 778 (1992).
[CrossRef] [PubMed]

R. de la Fuente, A. Barthelemy, Opt. Commun. 88, 419 (1992).
[CrossRef]

F. Reynaud, A. Barthelemy, in Guided-Wave Nonlinear Optics, D. B. Ostrowsky, R. Reinisch, eds. (Kluwer, Dordrecht, The Netherlands, 1992), pp. 319–340, and references therein.

de la Fuente, R.

R. de la Fuente, A. Barthelemy, IEEE J. Quantum Electron. 28, 547 (1992).
[CrossRef]

R. de la Fuente, A. Barthelemy, Opt. Commun. 88, 419 (1992).
[CrossRef]

Islam, M. N.

Jackel, J. L.

Leaird, D. E.

Li, Q. Y.

Luther-Davies, B.

Oliver, M. K.

Osgood, R. M.

Pask, C.

Reynaud, F.

M. Shalaby, F. Reynaud, A. Barthelemy, Opt. Lett. 17, 778 (1992).
[CrossRef] [PubMed]

F. Reynaud, A. Barthelemy, in Guided-Wave Nonlinear Optics, D. B. Ostrowsky, R. Reinisch, eds. (Kluwer, Dordrecht, The Netherlands, 1992), pp. 319–340, and references therein.

Sammut, R. A.

Scarmozzino, R.

Shalaby, M.

Silberberg, Y.

Smith, P. W. E.

Vogel, E. M.

Weiner, A. M.

Xiaoping, Y.

IEEE J. Quantum Electron. (1)

R. de la Fuente, A. Barthelemy, IEEE J. Quantum Electron. 28, 547 (1992).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (2)

Opt. Commun. (1)

R. de la Fuente, A. Barthelemy, Opt. Commun. 88, 419 (1992).
[CrossRef]

Opt. Lett. (4)

Other (2)

F. Reynaud, A. Barthelemy, in Guided-Wave Nonlinear Optics, D. B. Ostrowsky, R. Reinisch, eds. (Kluwer, Dordrecht, The Netherlands, 1992), pp. 319–340, and references therein.

The effect of dispersion could be included by redefining η as the ratio of k(nLn2)1/2 at ω2 to that at ω1.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Mutual deflection of two beams in a medium with κ = −1. Here P2 = 0.6P1 and λ2 = 1.31 μm (η = 1.1908).

Fig. 2
Fig. 2

Case with κ = 2 and λ2 = 0.81 μm: (a) P2 = 0.2P1, tunnelling of the two beams; (b) P2 = 0.3P1, most of beam 2 is switched and becomes guided by beam 1, while a small portion of its power is deflected and eventually is diffracted.

Fig. 3
Fig. 3

Case with κ = 2 and λ2 = 1.31 μm: (a) P2 = 1.2P1, mutual splitting of the beams (i.e., each output arm contains both frequencies); (b) P2 = 1.5P1, a small portion of the power in beam 1 is guided by beam 2; (c) P2 = 2.1P1, beam 1 is mostly reflected with a small portion trapped by beam 2.

Fig. 4
Fig. 4

Variation of the angles α1 and α2 of the left and right output arms, respectively. The solid curves describe the dependence of the angles on P2/P1, with η = 1.1908. The dashed curves, describing the dependence on η, are calculated by using P2/P1 = 1.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

2 i β 1 ρ ψ 1 Z + 2 ψ 1 X 2 W 1 2 ψ 1 + ( | ψ 1 | 2 + κ η 2 | ψ 2 | 2 ) ψ 1 = 0 ,
2 i β 2 ρ ψ 2 Z + 2 ψ 2 X 2 W 2 2 ψ 2 + ( κ η 2 | ψ 1 | 2 + | ψ 2 | 2 ) ψ 2 = 0 .
ψ j = 2 W j sech [ W j ( X a j Z ) ] × exp [ i β j ρ a j ( X a j Z / 2 ) ] ,
α j = arctan [ ( γ j a j + 2 γ 3 j a 3 j γ 3 j a j ) / ( γ j + γ 3 j ) ] j = 1 , 2 ,

Metrics