Abstract

The temporal effect of optical phase conjugation in dispersion-shifted fiber is studied numerically. Frequency chirping is induced in the conjugate pulse by the signal pulse and the pump wave through cross-phase modulation, which increases with the signal power and may distort the pulse shape when the conjugate pulse propagates in the standard fiber. It is also shown that, when the signal power is low, the optical phase conjugation is nearly ideal.

© 1994 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Watanabe, T. Naito, T. Chikama, IEEE Photon. Technol. Lett. 5, 92 (1993).
    [CrossRef]
  2. R. M. Jopson, A. H. Gnauck, R. M. Derosier, Electron. Lett. 29, 576 (1993).
    [CrossRef]
  3. A. Yariv, D. Fekete, D. M. Pepper, Opt. Lett. 4, 52 (1979).
    [CrossRef] [PubMed]
  4. K. Inoue, H. Toba, IEEE Photon. Technol. Lett. 4, 69 (1992).
    [CrossRef]
  5. G. P. Agrawal, Nonlinear Fiber Optics, 1st ed. (Academic, Boston, Mass., 1989), p. 40.
  6. R. A. Fisher, B. R. Suydam, D. Yevick, Opt. Lett. 8, 611 (1983).
    [CrossRef] [PubMed]

1993 (2)

S. Watanabe, T. Naito, T. Chikama, IEEE Photon. Technol. Lett. 5, 92 (1993).
[CrossRef]

R. M. Jopson, A. H. Gnauck, R. M. Derosier, Electron. Lett. 29, 576 (1993).
[CrossRef]

1992 (1)

K. Inoue, H. Toba, IEEE Photon. Technol. Lett. 4, 69 (1992).
[CrossRef]

1983 (1)

1979 (1)

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics, 1st ed. (Academic, Boston, Mass., 1989), p. 40.

Chikama, T.

S. Watanabe, T. Naito, T. Chikama, IEEE Photon. Technol. Lett. 5, 92 (1993).
[CrossRef]

Derosier, R. M.

R. M. Jopson, A. H. Gnauck, R. M. Derosier, Electron. Lett. 29, 576 (1993).
[CrossRef]

Fekete, D.

Fisher, R. A.

Gnauck, A. H.

R. M. Jopson, A. H. Gnauck, R. M. Derosier, Electron. Lett. 29, 576 (1993).
[CrossRef]

Inoue, K.

K. Inoue, H. Toba, IEEE Photon. Technol. Lett. 4, 69 (1992).
[CrossRef]

Jopson, R. M.

R. M. Jopson, A. H. Gnauck, R. M. Derosier, Electron. Lett. 29, 576 (1993).
[CrossRef]

Naito, T.

S. Watanabe, T. Naito, T. Chikama, IEEE Photon. Technol. Lett. 5, 92 (1993).
[CrossRef]

Pepper, D. M.

Suydam, B. R.

Toba, H.

K. Inoue, H. Toba, IEEE Photon. Technol. Lett. 4, 69 (1992).
[CrossRef]

Watanabe, S.

S. Watanabe, T. Naito, T. Chikama, IEEE Photon. Technol. Lett. 5, 92 (1993).
[CrossRef]

Yariv, A.

Yevick, D.

Electron. Lett. (1)

R. M. Jopson, A. H. Gnauck, R. M. Derosier, Electron. Lett. 29, 576 (1993).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

K. Inoue, H. Toba, IEEE Photon. Technol. Lett. 4, 69 (1992).
[CrossRef]

S. Watanabe, T. Naito, T. Chikama, IEEE Photon. Technol. Lett. 5, 92 (1993).
[CrossRef]

Opt. Lett. (2)

Other (1)

G. P. Agrawal, Nonlinear Fiber Optics, 1st ed. (Academic, Boston, Mass., 1989), p. 40.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Peak powers of the conjugate pulses along the DSF for 8-mW pump power and various signal powers P2.

Fig. 2
Fig. 2

Instantaneous frequencies δω of the conjugate pulses after they propagate 20 km in the DSF for the cases shown in Fig. 1. The δω of the input signal pulse is also shown.

Fig. 3
Fig. 3

Instantaneous frequencies δω of the conjugate pulses after they propagate 80 km in the STF. The cases obtained from various signal powers P2 are shown, as well as the δω with ideal OPC.

Fig. 4
Fig. 4

Corresponding pulse shapes of the conjugate pulses shown in Fig. 3. The original pulse shape given by Eq. (4) is also shown. The amplitudes of the pulses are normalized.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

i ϕ z i 1 6 β 3 3 ϕ t 3 + γ | ϕ | 2 ϕ = 1 2 i α ϕ .
ϕ = ϕ p + ϕ s exp ( i Ω t ) + ϕ c exp ( i Ω t ) ,
i ϕ p z i 1 6 β 3 3 ϕ p t 3 + γ ( | ϕ p | 2 + 2 | ϕ s | 2 + 2 | ϕ c | 2 ) ϕ p + 2 γ ϕ s ϕ c ϕ p * = 1 2 i α ϕ p ,
i ϕ s z + 1 6 β 3 Ω 3 ϕ s + i 1 2 β 3 Ω 2 ϕ s t 1 2 β 3 Ω 2 ϕ s t 2 i 1 6 β 3 3 ϕ s t 3 + γ ( | ϕ s | 2 + 2 | ϕ c | 2 + 2 | ϕ p | 2 ) ϕ s + γ ϕ p 2 ϕ c * = 1 2 i α ϕ s ,
i ϕ c z 1 6 β 3 Ω 3 ϕ c + i 1 2 β 3 Ω 2 ϕ c t + 1 2 β 3 Ω 2 ϕ c t 2 i 1 6 β 3 3 ϕ c t 3 + γ ( | ϕ c | 2 + 2 | ϕ s | 2 + 2 | ϕ p | 2 ) ϕ c + γ ϕ p 2 ϕ s * = 1 2 i α ϕ c ,
ϕ 1 = P 1 exp [ 1 2 ( 2 t / τ 1 ) 2 ] ,
ϕ = P p + ϕ 2 exp ( i Ω t ) ,

Metrics