Abstract

Metallic objects reflect light and have generally been considered poor candidates for optical traps, particularly with optical tweezers, which rely on a gradient force to provide trapping. We demonstrate that stable trapping can occur with optical tweezers when they are used with small metallic Rayleigh particles. In this size regime, the scattering pictures for metals and dielectrics are similar, and the larger polarizability of metals implies that trapping forces are greater. The latter fact makes the use of metal particles attractive for certain biological applications. Comparison of trapping forces for latex and gold spheres demonstrates that the gradient force is the major determinant of trapping strength and that competing effects, such as scattering or radiometric forces, are relatively minor.

© 1994 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Trapping metallic Rayleigh particles with radial polarization

Qiwen Zhan
Opt. Express 12(15) 3377-3382 (2004)

Optical trapping near resonance absorption

Rodney R. Agayan, Frederick Gittes, Raoul Kopelman, and Christoph F. Schmidt
Appl. Opt. 41(12) 2318-2327 (2002)

Optical trapping of microscopic metal particles

Shunichi Sato, Yasunori Harada, and Yoshio Waseda
Opt. Lett. 19(22) 1807-1809 (1994)

References

  • View by:
  • |
  • |
  • |

  1. A. Ashkin, Phys. Rev. Lett. 40, 729 (1978).
    [Crossref]
  2. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, Opt. Lett. 11, 288 (1986).
    [Crossref] [PubMed]
  3. K. Svoboda and S. M. Block, Ann. Rev. Biophys. Biomol. Struct. 23, 247 (1994).
    [Crossref]
  4. H. Misawa, N. Kitamura, and H. Masuhara, J. Am. Chem. Soc. 113, 7859 (1991).
    [Crossref]
  5. A. Simon and A. Libchaber, Phys. Rev. Lett. 68, 3375 (1992).
    [Crossref] [PubMed]
  6. J. P. Barton, D. R. Alexander, and S. A. Schaub, J. Appl. Phys. 66, 4594 (1989).
    [Crossref]
  7. A. Ashkin, Biophys. J. 61, 569 (1992).
    [Crossref] [PubMed]
  8. W. H. Wright, G. J. Sonek, and M. W. Berns, Appl. Phys. Lett. 63, 715 (1993).
    [Crossref]
  9. W. H. Wright, G. J. Sonek, and M. W. Berns, Appl. Opt. 33, 1735 (1994).
    [Crossref] [PubMed]
  10. G. Hettner, Z. Phys. 37, 179 (1926).
    [Crossref]
  11. A. Ashkin and J. M. Dziedzic, Appl. Phys. Lett. 28, 333 (1976).
    [Crossref]
  12. A. Ashkin, Science 210, 1081 (1980).
    [Crossref] [PubMed]
  13. K. Sasaki, M. Koshioka, H. Misawa, N. Kitamura, and H. Masuhara, Appl. Phys. Lett. 60, 807 (1992).
    [Crossref]
  14. M. Edidin, S. C. Kuo, and M. P. Sheetz, Science 254, 1379 (1991).
    [Crossref] [PubMed]
  15. G. Roosen and C. Imbert, Opt. Commun. 26, 432 (1978).
    [Crossref]
  16. K. Svoboda, C. F. Schmidt, B. J. Schnapp, and S. M. Block, Nature (London)  365, 721 (1993).
    [Crossref] [PubMed]
  17. W. Denk and W. W. Webb, Appl. Opt. 29, 2382 (1990).
    [Crossref] [PubMed]
  18. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).
  19. H. J. Hagemann, W. Gudat, and C. Kunz, “Optical constants from the far infrared to the x-ray region: Mg, Al, Cu, Ag, Au, Bi, C, and Al2O3,”DESY Rep. SR-74/7 (Hamburg, Germany, 1974), Table 5, p. 1.
  20. N. G. van Kampen, Stochastic Processes in Physics and Chemistry (North-Holland, Amsterdam, 1992), p. 349.
  21. R. H. Boundy and R. F. Boyer, eds., Styrene, Its Polymers, Copolymers and Derivatives (Reinhold, New York, 1952).
  22. I. P. Ghislain and W. W. Webb, Opt. Lett. 18, 1678 (1993).
    [Crossref] [PubMed]

1994 (2)

K. Svoboda and S. M. Block, Ann. Rev. Biophys. Biomol. Struct. 23, 247 (1994).
[Crossref]

W. H. Wright, G. J. Sonek, and M. W. Berns, Appl. Opt. 33, 1735 (1994).
[Crossref] [PubMed]

1993 (3)

K. Svoboda, C. F. Schmidt, B. J. Schnapp, and S. M. Block, Nature (London)  365, 721 (1993).
[Crossref] [PubMed]

W. H. Wright, G. J. Sonek, and M. W. Berns, Appl. Phys. Lett. 63, 715 (1993).
[Crossref]

I. P. Ghislain and W. W. Webb, Opt. Lett. 18, 1678 (1993).
[Crossref] [PubMed]

1992 (3)

A. Ashkin, Biophys. J. 61, 569 (1992).
[Crossref] [PubMed]

A. Simon and A. Libchaber, Phys. Rev. Lett. 68, 3375 (1992).
[Crossref] [PubMed]

K. Sasaki, M. Koshioka, H. Misawa, N. Kitamura, and H. Masuhara, Appl. Phys. Lett. 60, 807 (1992).
[Crossref]

1991 (2)

M. Edidin, S. C. Kuo, and M. P. Sheetz, Science 254, 1379 (1991).
[Crossref] [PubMed]

H. Misawa, N. Kitamura, and H. Masuhara, J. Am. Chem. Soc. 113, 7859 (1991).
[Crossref]

1990 (1)

1989 (1)

J. P. Barton, D. R. Alexander, and S. A. Schaub, J. Appl. Phys. 66, 4594 (1989).
[Crossref]

1986 (1)

1980 (1)

A. Ashkin, Science 210, 1081 (1980).
[Crossref] [PubMed]

1978 (2)

G. Roosen and C. Imbert, Opt. Commun. 26, 432 (1978).
[Crossref]

A. Ashkin, Phys. Rev. Lett. 40, 729 (1978).
[Crossref]

1976 (1)

A. Ashkin and J. M. Dziedzic, Appl. Phys. Lett. 28, 333 (1976).
[Crossref]

1926 (1)

G. Hettner, Z. Phys. 37, 179 (1926).
[Crossref]

Alexander, D. R.

J. P. Barton, D. R. Alexander, and S. A. Schaub, J. Appl. Phys. 66, 4594 (1989).
[Crossref]

Ashkin, A.

A. Ashkin, Biophys. J. 61, 569 (1992).
[Crossref] [PubMed]

A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, Opt. Lett. 11, 288 (1986).
[Crossref] [PubMed]

A. Ashkin, Science 210, 1081 (1980).
[Crossref] [PubMed]

A. Ashkin, Phys. Rev. Lett. 40, 729 (1978).
[Crossref]

A. Ashkin and J. M. Dziedzic, Appl. Phys. Lett. 28, 333 (1976).
[Crossref]

Barton, J. P.

J. P. Barton, D. R. Alexander, and S. A. Schaub, J. Appl. Phys. 66, 4594 (1989).
[Crossref]

Berns, M. W.

W. H. Wright, G. J. Sonek, and M. W. Berns, Appl. Opt. 33, 1735 (1994).
[Crossref] [PubMed]

W. H. Wright, G. J. Sonek, and M. W. Berns, Appl. Phys. Lett. 63, 715 (1993).
[Crossref]

Bjorkholm, J. E.

Block, S. M.

K. Svoboda and S. M. Block, Ann. Rev. Biophys. Biomol. Struct. 23, 247 (1994).
[Crossref]

K. Svoboda, C. F. Schmidt, B. J. Schnapp, and S. M. Block, Nature (London)  365, 721 (1993).
[Crossref] [PubMed]

Bohren, C. F.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).

Chu, S.

Denk, W.

Dziedzic, J. M.

Edidin, M.

M. Edidin, S. C. Kuo, and M. P. Sheetz, Science 254, 1379 (1991).
[Crossref] [PubMed]

Ghislain, I. P.

Gudat, W.

H. J. Hagemann, W. Gudat, and C. Kunz, “Optical constants from the far infrared to the x-ray region: Mg, Al, Cu, Ag, Au, Bi, C, and Al2O3,”DESY Rep. SR-74/7 (Hamburg, Germany, 1974), Table 5, p. 1.

Hagemann, H. J.

H. J. Hagemann, W. Gudat, and C. Kunz, “Optical constants from the far infrared to the x-ray region: Mg, Al, Cu, Ag, Au, Bi, C, and Al2O3,”DESY Rep. SR-74/7 (Hamburg, Germany, 1974), Table 5, p. 1.

Hettner, G.

G. Hettner, Z. Phys. 37, 179 (1926).
[Crossref]

Huffman, D. R.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).

Imbert, C.

G. Roosen and C. Imbert, Opt. Commun. 26, 432 (1978).
[Crossref]

Kitamura, N.

K. Sasaki, M. Koshioka, H. Misawa, N. Kitamura, and H. Masuhara, Appl. Phys. Lett. 60, 807 (1992).
[Crossref]

H. Misawa, N. Kitamura, and H. Masuhara, J. Am. Chem. Soc. 113, 7859 (1991).
[Crossref]

Koshioka, M.

K. Sasaki, M. Koshioka, H. Misawa, N. Kitamura, and H. Masuhara, Appl. Phys. Lett. 60, 807 (1992).
[Crossref]

Kunz, C.

H. J. Hagemann, W. Gudat, and C. Kunz, “Optical constants from the far infrared to the x-ray region: Mg, Al, Cu, Ag, Au, Bi, C, and Al2O3,”DESY Rep. SR-74/7 (Hamburg, Germany, 1974), Table 5, p. 1.

Kuo, S. C.

M. Edidin, S. C. Kuo, and M. P. Sheetz, Science 254, 1379 (1991).
[Crossref] [PubMed]

Libchaber, A.

A. Simon and A. Libchaber, Phys. Rev. Lett. 68, 3375 (1992).
[Crossref] [PubMed]

Masuhara, H.

K. Sasaki, M. Koshioka, H. Misawa, N. Kitamura, and H. Masuhara, Appl. Phys. Lett. 60, 807 (1992).
[Crossref]

H. Misawa, N. Kitamura, and H. Masuhara, J. Am. Chem. Soc. 113, 7859 (1991).
[Crossref]

Misawa, H.

K. Sasaki, M. Koshioka, H. Misawa, N. Kitamura, and H. Masuhara, Appl. Phys. Lett. 60, 807 (1992).
[Crossref]

H. Misawa, N. Kitamura, and H. Masuhara, J. Am. Chem. Soc. 113, 7859 (1991).
[Crossref]

Roosen, G.

G. Roosen and C. Imbert, Opt. Commun. 26, 432 (1978).
[Crossref]

Sasaki, K.

K. Sasaki, M. Koshioka, H. Misawa, N. Kitamura, and H. Masuhara, Appl. Phys. Lett. 60, 807 (1992).
[Crossref]

Schaub, S. A.

J. P. Barton, D. R. Alexander, and S. A. Schaub, J. Appl. Phys. 66, 4594 (1989).
[Crossref]

Schmidt, C. F.

K. Svoboda, C. F. Schmidt, B. J. Schnapp, and S. M. Block, Nature (London)  365, 721 (1993).
[Crossref] [PubMed]

Schnapp, B. J.

K. Svoboda, C. F. Schmidt, B. J. Schnapp, and S. M. Block, Nature (London)  365, 721 (1993).
[Crossref] [PubMed]

Sheetz, M. P.

M. Edidin, S. C. Kuo, and M. P. Sheetz, Science 254, 1379 (1991).
[Crossref] [PubMed]

Simon, A.

A. Simon and A. Libchaber, Phys. Rev. Lett. 68, 3375 (1992).
[Crossref] [PubMed]

Sonek, G. J.

W. H. Wright, G. J. Sonek, and M. W. Berns, Appl. Opt. 33, 1735 (1994).
[Crossref] [PubMed]

W. H. Wright, G. J. Sonek, and M. W. Berns, Appl. Phys. Lett. 63, 715 (1993).
[Crossref]

Svoboda, K.

K. Svoboda and S. M. Block, Ann. Rev. Biophys. Biomol. Struct. 23, 247 (1994).
[Crossref]

K. Svoboda, C. F. Schmidt, B. J. Schnapp, and S. M. Block, Nature (London)  365, 721 (1993).
[Crossref] [PubMed]

van Kampen, N. G.

N. G. van Kampen, Stochastic Processes in Physics and Chemistry (North-Holland, Amsterdam, 1992), p. 349.

Webb, W. W.

Wright, W. H.

W. H. Wright, G. J. Sonek, and M. W. Berns, Appl. Opt. 33, 1735 (1994).
[Crossref] [PubMed]

W. H. Wright, G. J. Sonek, and M. W. Berns, Appl. Phys. Lett. 63, 715 (1993).
[Crossref]

Ann. Rev. Biophys. Biomol. Struct. (1)

K. Svoboda and S. M. Block, Ann. Rev. Biophys. Biomol. Struct. 23, 247 (1994).
[Crossref]

Appl. Opt. (2)

Appl. Phys. Lett. (3)

A. Ashkin and J. M. Dziedzic, Appl. Phys. Lett. 28, 333 (1976).
[Crossref]

K. Sasaki, M. Koshioka, H. Misawa, N. Kitamura, and H. Masuhara, Appl. Phys. Lett. 60, 807 (1992).
[Crossref]

W. H. Wright, G. J. Sonek, and M. W. Berns, Appl. Phys. Lett. 63, 715 (1993).
[Crossref]

Biophys. J. (1)

A. Ashkin, Biophys. J. 61, 569 (1992).
[Crossref] [PubMed]

J. Am. Chem. Soc. (1)

H. Misawa, N. Kitamura, and H. Masuhara, J. Am. Chem. Soc. 113, 7859 (1991).
[Crossref]

J. Appl. Phys. (1)

J. P. Barton, D. R. Alexander, and S. A. Schaub, J. Appl. Phys. 66, 4594 (1989).
[Crossref]

Nature (1)

K. Svoboda, C. F. Schmidt, B. J. Schnapp, and S. M. Block, Nature (London)  365, 721 (1993).
[Crossref] [PubMed]

Opt. Commun. (1)

G. Roosen and C. Imbert, Opt. Commun. 26, 432 (1978).
[Crossref]

Opt. Lett. (2)

Phys. Rev. Lett. (2)

A. Simon and A. Libchaber, Phys. Rev. Lett. 68, 3375 (1992).
[Crossref] [PubMed]

A. Ashkin, Phys. Rev. Lett. 40, 729 (1978).
[Crossref]

Science (2)

M. Edidin, S. C. Kuo, and M. P. Sheetz, Science 254, 1379 (1991).
[Crossref] [PubMed]

A. Ashkin, Science 210, 1081 (1980).
[Crossref] [PubMed]

Z. Phys. (1)

G. Hettner, Z. Phys. 37, 179 (1926).
[Crossref]

Other (4)

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).

H. J. Hagemann, W. Gudat, and C. Kunz, “Optical constants from the far infrared to the x-ray region: Mg, Al, Cu, Ag, Au, Bi, C, and Al2O3,”DESY Rep. SR-74/7 (Hamburg, Germany, 1974), Table 5, p. 1.

N. G. van Kampen, Stochastic Processes in Physics and Chemistry (North-Holland, Amsterdam, 1992), p. 349.

R. H. Boundy and R. F. Boyer, eds., Styrene, Its Polymers, Copolymers and Derivatives (Reinhold, New York, 1952).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Left: Schematic of the optical trapping interferometer. W’s, Wollaston prisms; OL, objective lens; S, specimen plane; C, condenser; L/4, quarter-wave plate; PBS, polarizing beam-splitting cube; A, B, photodetectors/amplifiers. Center right: Schematic of the trapping geometry. The position of the bead with respect to the beam center, y(t), is proportional to the normalized difference voltage; F(t) is the force due to the moving fluid. Bottom right: MS difference over sum voltage [∝ 〈y2(t)〉] of the position detector as a function of time. The trace shows stepwise increments due to the successive arrival of three gold particles. The points between steps are an averaging artifact and the variability in step height is due to particle heterogeneity.

Fig. 2
Fig. 2

(a) Single gold sphere, trapped 2 μm from the coverglass, viewed with video-enhanced DIC microscopy (scale bar, 5 μm), (b) Transmission electron micrograph of gold spheres (scale bar, 100 nm). The particle diameter was 36.2 ± 2 nm (mean ± SD). Few aggregates were observed.

Fig. 3
Fig. 3

Power spectrum of position fluctuations for a gold particle trapped at 100-mW power, 2 μm from the surface. The spectrum was normalized such that y 2 ( t ) = 2 π 0 PSD ( f ) d f, where PSD is the power spectral density.

Tables (1)

Tables Icon

Table 1 Computed Polarizabilities of Gold and Latex Particles

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

α = 3 V ε ˆ ε m ε ˆ + 2 ε m ,

Metrics