Abstract

We describe the single-beam optical trapping of microscopic KTiOPO4 crystals, using Nd:YAG and Ti:Al2O3 lasers. The high power density of the laser beam at the crystals to be trapped induces the second-harmonic and sum-frequency generation. By changing the wavelength of the Ti: Al2O3 laser, we detect the sum-frequency generation with the fixed wavelength of Nd:YAG laser between 430 and 486 nm for the particle during the trapping.

© 1994 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Ashkin, K. Schutze, J. M. Dziedzic, U. Euteneuer, M. Schliwa, Nature (London) 348, 346 (1990).
    [CrossRef] [PubMed]
  2. S. M. Block, L. S. B. Goldstein, B. J. Schnapp, Nature (London) 348, 348 (1990).
    [CrossRef] [PubMed]
  3. A. Ashkin, Biophys. J. 61, 569 (1992).
    [CrossRef] [PubMed]
  4. H. Misawa, K. Sasaki, M. Koshioka, N. Kitamura, H. Masuhara, Appl. Phys. Lett. 60, 310 (1992).
    [CrossRef]
  5. S. Sato, H. Inaba, Electron. Lett. 28, 286 (1992).
    [CrossRef]
  6. S. Sato, M. Ohyumi, H. Shibata, Y. Ogawa, H. Inaba, Opt. Lett. 16, 282 (1991).
    [CrossRef] [PubMed]
  7. S. Sato, M. Ishigure, H. Inaba, Electron. Lett. 27, 1831 (1991).
    [CrossRef]
  8. F. C. Zumsteg, J. D. Bierlein, T. E. Gier, J. Appl. Phys. 47, 4980 (1976).
    [CrossRef]
  9. A. Yariv, Quantum Electronics, 2nd ed. (Wiley, New York, 1975), p. 431.

1992 (3)

A. Ashkin, Biophys. J. 61, 569 (1992).
[CrossRef] [PubMed]

H. Misawa, K. Sasaki, M. Koshioka, N. Kitamura, H. Masuhara, Appl. Phys. Lett. 60, 310 (1992).
[CrossRef]

S. Sato, H. Inaba, Electron. Lett. 28, 286 (1992).
[CrossRef]

1991 (2)

1990 (2)

A. Ashkin, K. Schutze, J. M. Dziedzic, U. Euteneuer, M. Schliwa, Nature (London) 348, 346 (1990).
[CrossRef] [PubMed]

S. M. Block, L. S. B. Goldstein, B. J. Schnapp, Nature (London) 348, 348 (1990).
[CrossRef] [PubMed]

1976 (1)

F. C. Zumsteg, J. D. Bierlein, T. E. Gier, J. Appl. Phys. 47, 4980 (1976).
[CrossRef]

Ashkin, A.

A. Ashkin, Biophys. J. 61, 569 (1992).
[CrossRef] [PubMed]

A. Ashkin, K. Schutze, J. M. Dziedzic, U. Euteneuer, M. Schliwa, Nature (London) 348, 346 (1990).
[CrossRef] [PubMed]

Bierlein, J. D.

F. C. Zumsteg, J. D. Bierlein, T. E. Gier, J. Appl. Phys. 47, 4980 (1976).
[CrossRef]

Block, S. M.

S. M. Block, L. S. B. Goldstein, B. J. Schnapp, Nature (London) 348, 348 (1990).
[CrossRef] [PubMed]

Dziedzic, J. M.

A. Ashkin, K. Schutze, J. M. Dziedzic, U. Euteneuer, M. Schliwa, Nature (London) 348, 346 (1990).
[CrossRef] [PubMed]

Euteneuer, U.

A. Ashkin, K. Schutze, J. M. Dziedzic, U. Euteneuer, M. Schliwa, Nature (London) 348, 346 (1990).
[CrossRef] [PubMed]

Gier, T. E.

F. C. Zumsteg, J. D. Bierlein, T. E. Gier, J. Appl. Phys. 47, 4980 (1976).
[CrossRef]

Goldstein, L. S. B.

S. M. Block, L. S. B. Goldstein, B. J. Schnapp, Nature (London) 348, 348 (1990).
[CrossRef] [PubMed]

Inaba, H.

S. Sato, H. Inaba, Electron. Lett. 28, 286 (1992).
[CrossRef]

S. Sato, M. Ohyumi, H. Shibata, Y. Ogawa, H. Inaba, Opt. Lett. 16, 282 (1991).
[CrossRef] [PubMed]

S. Sato, M. Ishigure, H. Inaba, Electron. Lett. 27, 1831 (1991).
[CrossRef]

Ishigure, M.

S. Sato, M. Ishigure, H. Inaba, Electron. Lett. 27, 1831 (1991).
[CrossRef]

Kitamura, N.

H. Misawa, K. Sasaki, M. Koshioka, N. Kitamura, H. Masuhara, Appl. Phys. Lett. 60, 310 (1992).
[CrossRef]

Koshioka, M.

H. Misawa, K. Sasaki, M. Koshioka, N. Kitamura, H. Masuhara, Appl. Phys. Lett. 60, 310 (1992).
[CrossRef]

Masuhara, H.

H. Misawa, K. Sasaki, M. Koshioka, N. Kitamura, H. Masuhara, Appl. Phys. Lett. 60, 310 (1992).
[CrossRef]

Misawa, H.

H. Misawa, K. Sasaki, M. Koshioka, N. Kitamura, H. Masuhara, Appl. Phys. Lett. 60, 310 (1992).
[CrossRef]

Ogawa, Y.

Ohyumi, M.

Sasaki, K.

H. Misawa, K. Sasaki, M. Koshioka, N. Kitamura, H. Masuhara, Appl. Phys. Lett. 60, 310 (1992).
[CrossRef]

Sato, S.

S. Sato, H. Inaba, Electron. Lett. 28, 286 (1992).
[CrossRef]

S. Sato, M. Ohyumi, H. Shibata, Y. Ogawa, H. Inaba, Opt. Lett. 16, 282 (1991).
[CrossRef] [PubMed]

S. Sato, M. Ishigure, H. Inaba, Electron. Lett. 27, 1831 (1991).
[CrossRef]

Schliwa, M.

A. Ashkin, K. Schutze, J. M. Dziedzic, U. Euteneuer, M. Schliwa, Nature (London) 348, 346 (1990).
[CrossRef] [PubMed]

Schnapp, B. J.

S. M. Block, L. S. B. Goldstein, B. J. Schnapp, Nature (London) 348, 348 (1990).
[CrossRef] [PubMed]

Schutze, K.

A. Ashkin, K. Schutze, J. M. Dziedzic, U. Euteneuer, M. Schliwa, Nature (London) 348, 346 (1990).
[CrossRef] [PubMed]

Shibata, H.

Yariv, A.

A. Yariv, Quantum Electronics, 2nd ed. (Wiley, New York, 1975), p. 431.

Zumsteg, F. C.

F. C. Zumsteg, J. D. Bierlein, T. E. Gier, J. Appl. Phys. 47, 4980 (1976).
[CrossRef]

Appl. Phys. Lett. (1)

H. Misawa, K. Sasaki, M. Koshioka, N. Kitamura, H. Masuhara, Appl. Phys. Lett. 60, 310 (1992).
[CrossRef]

Biophys. J. (1)

A. Ashkin, Biophys. J. 61, 569 (1992).
[CrossRef] [PubMed]

Electron. Lett. (2)

S. Sato, M. Ishigure, H. Inaba, Electron. Lett. 27, 1831 (1991).
[CrossRef]

S. Sato, H. Inaba, Electron. Lett. 28, 286 (1992).
[CrossRef]

J. Appl. Phys. (1)

F. C. Zumsteg, J. D. Bierlein, T. E. Gier, J. Appl. Phys. 47, 4980 (1976).
[CrossRef]

Nature (2)

A. Ashkin, K. Schutze, J. M. Dziedzic, U. Euteneuer, M. Schliwa, Nature (London) 348, 346 (1990).
[CrossRef] [PubMed]

S. M. Block, L. S. B. Goldstein, B. J. Schnapp, Nature (London) 348, 348 (1990).
[CrossRef] [PubMed]

Opt. Lett. (1)

Other (1)

A. Yariv, Quantum Electronics, 2nd ed. (Wiley, New York, 1975), p. 431.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Single-beam optical trapping of a KTP microscopic particle (approximately 4 μm) with a Nd:YAG laser beam at 1064 nm: (a) photograph of a trapped KTP particle, indicated by the arrow, (b) photograph of the KTP particle that is trapped and removed from the bottom of the sample cell, (c) photograph of the same trapped KTP particle, which remains stable despite the horizontal movement of the microscope stage. The laser power is approximately 62 mW.

Fig. 2
Fig. 2

Measured spectra of second-harmonic (SH) generation from an optically trapped KTP microscopic particle: (a) Nd:YAG laser beam at 1064 nm used with irradiated power of approximately 62 mW, (b) Ti:Al2O3 laser beam at 862.2 nm used with irradiated power of nearly 10 mW.

Fig. 3
Fig. 3

Measured spectrum of sum-frequency (SF) generation from an optically trapped KTP microscopic particle with simultaneous Nd:YAG and Ti:Al2O3 laser beams of 62- and 6-mW power at 1064 and 722 nm, respectively.

Fig. 4
Fig. 4

Microscope images of a two-dimensionally trapped flat-shaped 10-μm KTP particle: (a) photograph of the microparticle trapped by a Nd:YAG laser beam focused on the point indicated by the arrow, (b) emission pattern of a second-harmonic wave at 532 nm from the trapped particle accompanying the bright area near the edge of the lower left-hand side where the Nd:YAG laser beam is not irradiated directly.

Metrics