Abstract

We explore theoretically and experimentally how application of an electric field to a photorefractive crystal affects the recording and the readout of holograms. We consider, for the first time to our knowledge, the effects of fringe bending caused by nonlinear two-wave mixing on the change in Bragg condition and diffraction efficiency as a function of the applied electric field. Practical performance limitations for holographic data storage and image amplification are discussed.

© 1994 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Yeh, IEEE Quantum Electron. 25, 484 (1989).
    [CrossRef]
  2. C. Gu, J. Hong, P. Yeh, J. Opt. Soc. Am. B 9, 1473 (1992).
    [CrossRef]
  3. M. D. Ewbank, R. R. Neurgaonkar, W. K. Cory, J. Feinberg, J. Appl. Phys. 62, 374 (1987).
    [CrossRef]
  4. N. V. Kukhtarev, Sov. Tech. Phys. Lett. 2, 438 (1976).
  5. T. Kubota, Opt. Acta 26, 731 (1979).
    [CrossRef]
  6. H. Kogelnik, Bell Syst. Tech. J. 48, 2909 (1969).
  7. A. Kewitsch, M. Segev, A. Yariv, R. R. Neurgaonkar, Opt. Lett. 18, 534 (1993).
    [CrossRef] [PubMed]
  8. S. I. Stepanov, A. A. Kamshilin, M. P. Petrov, Sov. Tech. Phys. Lett. 3, 36 (1977).

1993

1992

1989

P. Yeh, IEEE Quantum Electron. 25, 484 (1989).
[CrossRef]

1987

M. D. Ewbank, R. R. Neurgaonkar, W. K. Cory, J. Feinberg, J. Appl. Phys. 62, 374 (1987).
[CrossRef]

1979

T. Kubota, Opt. Acta 26, 731 (1979).
[CrossRef]

1977

S. I. Stepanov, A. A. Kamshilin, M. P. Petrov, Sov. Tech. Phys. Lett. 3, 36 (1977).

1976

N. V. Kukhtarev, Sov. Tech. Phys. Lett. 2, 438 (1976).

1969

H. Kogelnik, Bell Syst. Tech. J. 48, 2909 (1969).

Cory, W. K.

M. D. Ewbank, R. R. Neurgaonkar, W. K. Cory, J. Feinberg, J. Appl. Phys. 62, 374 (1987).
[CrossRef]

Ewbank, M. D.

M. D. Ewbank, R. R. Neurgaonkar, W. K. Cory, J. Feinberg, J. Appl. Phys. 62, 374 (1987).
[CrossRef]

Feinberg, J.

M. D. Ewbank, R. R. Neurgaonkar, W. K. Cory, J. Feinberg, J. Appl. Phys. 62, 374 (1987).
[CrossRef]

Gu, C.

Hong, J.

Kamshilin, A. A.

S. I. Stepanov, A. A. Kamshilin, M. P. Petrov, Sov. Tech. Phys. Lett. 3, 36 (1977).

Kewitsch, A.

Kogelnik, H.

H. Kogelnik, Bell Syst. Tech. J. 48, 2909 (1969).

Kubota, T.

T. Kubota, Opt. Acta 26, 731 (1979).
[CrossRef]

Kukhtarev, N. V.

N. V. Kukhtarev, Sov. Tech. Phys. Lett. 2, 438 (1976).

Neurgaonkar, R. R.

A. Kewitsch, M. Segev, A. Yariv, R. R. Neurgaonkar, Opt. Lett. 18, 534 (1993).
[CrossRef] [PubMed]

M. D. Ewbank, R. R. Neurgaonkar, W. K. Cory, J. Feinberg, J. Appl. Phys. 62, 374 (1987).
[CrossRef]

Petrov, M. P.

S. I. Stepanov, A. A. Kamshilin, M. P. Petrov, Sov. Tech. Phys. Lett. 3, 36 (1977).

Segev, M.

Stepanov, S. I.

S. I. Stepanov, A. A. Kamshilin, M. P. Petrov, Sov. Tech. Phys. Lett. 3, 36 (1977).

Yariv, A.

Yeh, P.

Bell Syst. Tech. J.

H. Kogelnik, Bell Syst. Tech. J. 48, 2909 (1969).

IEEE Quantum Electron.

P. Yeh, IEEE Quantum Electron. 25, 484 (1989).
[CrossRef]

J. Appl. Phys.

M. D. Ewbank, R. R. Neurgaonkar, W. K. Cory, J. Feinberg, J. Appl. Phys. 62, 374 (1987).
[CrossRef]

J. Opt. Soc. Am. B

Opt. Acta

T. Kubota, Opt. Acta 26, 731 (1979).
[CrossRef]

Opt. Lett.

Sov. Tech. Phys. Lett.

N. V. Kukhtarev, Sov. Tech. Phys. Lett. 2, 438 (1976).

S. I. Stepanov, A. A. Kamshilin, M. P. Petrov, Sov. Tech. Phys. Lett. 3, 36 (1977).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Illustration of the types of transmission grating that can arise in the presence of strong amplitude and phase coupling. It corresponds to two holograms recorded with an applied field of 10 kV/cm in SBN:61 for two different signal-to-reference intensity ratios: (a) rpp = 100, (b) rpp = 1/100 (l = 2.67 mm, Λg = 5 μm).

Fig. 2
Fig. 2

Experimental and theoretical diffraction efficiencies as a function of the Bragg-detuning parameter ξ ˆ for holograms recorded in SBN:61 at five different fields, from top to bottom, 0, 2.5, 5.0, 7.5, and 10.0 kV/cm (rpp = 100/1).

Fig. 3
Fig. 3

Experimental diffraction efficiencies as a function of the Bragg-detuning parameter ξ ˆ for holograms recorded in SBN:61 at five different fields: 0, 2.5, 5.0, 7.5, and 10.0 kV/cm for curves (a), (b), (c), (d), and (e), respectively (rpp = 1/100).

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

cos θ ref d A ref d z = ι ˙ κ exp ( i ϕ ) | A sig | 2 A ref | A sig | 2 + | A ref | 2 , cos θ sig d A sig d z = i κ exp ( i ϕ ) | A ref | 2 A sig | A sig | 2 + | A ref | 2 ,
| E NORM | exp ( i ϕ ) = i E Q ( E D iE 0 W ) E Q + E D iE 0 W ,
n ( r ) = n e + n 1 | A ref ( z ) | | A sig ( z ) | | A ref ( z ) | 2 + | A sig ( z ) | 2 × cos [ K pc ( z ) r + ϕ ] .
K pc ( z ) = K + [ ψ ( z ) z + K z ] e z ,
E R ( r ) = a ρ ( z ) exp ( i k ρ r ) + a σ ( z ) exp ( i k σ r ) ,
cos θ ρ d a ρ d z = i κ ˆ ( z ) exp ( i ϕ ) a σ , cos θ σ [ d a σ d z i ξ ( z ) l a σ ] = i κ ˆ ( z ) exp ( i ϕ ) a ρ ,
κ ˆ ( z ) = π λ 0 n 1 | A ref ( z ) | | A sig ( z ) | | A ref ( z ) | 2 + | A sig ( z ) | 2 ,
ξ ( z ) = 2 ξ ˆ + l d ψ ( z ) d z = 2 [ ξ Kog ( Δ θ ρ , Δ λ 0 ) + ξ field ( E 0 R ) ξ field ( E 0 W ) ] + l d ψ ( z ) d z .

Metrics