Abstract

A compact tunable single-mode fiber laser at 1535 nm is developed by use of a novel combination of high-gain erbium:ytterbium (Er:Yb) phosphate-glass fiber within a fiber Fabry–Perot cavity. We demonstrate what we believe to be the shortest Er:Yb phosphate-glass fiber Fabry–Perot laser ever reported, having a 100-μm cavity length and a continuous wavelength tuning range over 4.52 nm (limited by the sharp fiber gain peak). An alternative three-mirror laser design has also demonstrated single-mode lasing operation.

© 1994 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Reekie, R. J. Mears, S. B. Poole, D. N. Payne, J. Lightwave Technol. LT-4, 956 (1986).
    [CrossRef]
  2. J. T. Kringlebotn, P. R. Morkel, L. Reekie, J. L. Archambault, D. N. Payne, in Nineteenth European Conference on Optical Communication (Swiss Electrotechnical Association, Zurich, 1993), p. 65.
  3. G. Grasso, A. Righetti, F. Fontana, in Seventeenth European Conference on Optical Communication (Impression Publi Trégor, Lannion, France, 1991), p. 149.
  4. C. V. Poulsen, M. Sejka, IEEE Photon. Technol. Lett. 5, 646 (1993).
    [CrossRef]
  5. P. Laporta, S. Taccheo, S. Longhi, O. Svelto, Opt. Lett. 18, 1232 (1993).
    [CrossRef] [PubMed]
  6. C. M. Miller, F. J. Janniello, Electron. Lett. 26, 2122 (1990).
    [CrossRef]
  7. K. Hsu, C. M. Miller, J. Lightwave Technol. 11, 1204 (1993).
    [CrossRef]

1993 (3)

C. V. Poulsen, M. Sejka, IEEE Photon. Technol. Lett. 5, 646 (1993).
[CrossRef]

K. Hsu, C. M. Miller, J. Lightwave Technol. 11, 1204 (1993).
[CrossRef]

P. Laporta, S. Taccheo, S. Longhi, O. Svelto, Opt. Lett. 18, 1232 (1993).
[CrossRef] [PubMed]

1990 (1)

C. M. Miller, F. J. Janniello, Electron. Lett. 26, 2122 (1990).
[CrossRef]

1986 (1)

L. Reekie, R. J. Mears, S. B. Poole, D. N. Payne, J. Lightwave Technol. LT-4, 956 (1986).
[CrossRef]

Archambault, J. L.

J. T. Kringlebotn, P. R. Morkel, L. Reekie, J. L. Archambault, D. N. Payne, in Nineteenth European Conference on Optical Communication (Swiss Electrotechnical Association, Zurich, 1993), p. 65.

Fontana, F.

G. Grasso, A. Righetti, F. Fontana, in Seventeenth European Conference on Optical Communication (Impression Publi Trégor, Lannion, France, 1991), p. 149.

Grasso, G.

G. Grasso, A. Righetti, F. Fontana, in Seventeenth European Conference on Optical Communication (Impression Publi Trégor, Lannion, France, 1991), p. 149.

Hsu, K.

K. Hsu, C. M. Miller, J. Lightwave Technol. 11, 1204 (1993).
[CrossRef]

Janniello, F. J.

C. M. Miller, F. J. Janniello, Electron. Lett. 26, 2122 (1990).
[CrossRef]

Kringlebotn, J. T.

J. T. Kringlebotn, P. R. Morkel, L. Reekie, J. L. Archambault, D. N. Payne, in Nineteenth European Conference on Optical Communication (Swiss Electrotechnical Association, Zurich, 1993), p. 65.

Laporta, P.

Longhi, S.

Mears, R. J.

L. Reekie, R. J. Mears, S. B. Poole, D. N. Payne, J. Lightwave Technol. LT-4, 956 (1986).
[CrossRef]

Miller, C. M.

K. Hsu, C. M. Miller, J. Lightwave Technol. 11, 1204 (1993).
[CrossRef]

C. M. Miller, F. J. Janniello, Electron. Lett. 26, 2122 (1990).
[CrossRef]

Morkel, P. R.

J. T. Kringlebotn, P. R. Morkel, L. Reekie, J. L. Archambault, D. N. Payne, in Nineteenth European Conference on Optical Communication (Swiss Electrotechnical Association, Zurich, 1993), p. 65.

Payne, D. N.

L. Reekie, R. J. Mears, S. B. Poole, D. N. Payne, J. Lightwave Technol. LT-4, 956 (1986).
[CrossRef]

J. T. Kringlebotn, P. R. Morkel, L. Reekie, J. L. Archambault, D. N. Payne, in Nineteenth European Conference on Optical Communication (Swiss Electrotechnical Association, Zurich, 1993), p. 65.

Poole, S. B.

L. Reekie, R. J. Mears, S. B. Poole, D. N. Payne, J. Lightwave Technol. LT-4, 956 (1986).
[CrossRef]

Poulsen, C. V.

C. V. Poulsen, M. Sejka, IEEE Photon. Technol. Lett. 5, 646 (1993).
[CrossRef]

Reekie, L.

L. Reekie, R. J. Mears, S. B. Poole, D. N. Payne, J. Lightwave Technol. LT-4, 956 (1986).
[CrossRef]

J. T. Kringlebotn, P. R. Morkel, L. Reekie, J. L. Archambault, D. N. Payne, in Nineteenth European Conference on Optical Communication (Swiss Electrotechnical Association, Zurich, 1993), p. 65.

Righetti, A.

G. Grasso, A. Righetti, F. Fontana, in Seventeenth European Conference on Optical Communication (Impression Publi Trégor, Lannion, France, 1991), p. 149.

Sejka, M.

C. V. Poulsen, M. Sejka, IEEE Photon. Technol. Lett. 5, 646 (1993).
[CrossRef]

Svelto, O.

Taccheo, S.

Electron. Lett. (1)

C. M. Miller, F. J. Janniello, Electron. Lett. 26, 2122 (1990).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

C. V. Poulsen, M. Sejka, IEEE Photon. Technol. Lett. 5, 646 (1993).
[CrossRef]

J. Lightwave Technol. (2)

K. Hsu, C. M. Miller, J. Lightwave Technol. 11, 1204 (1993).
[CrossRef]

L. Reekie, R. J. Mears, S. B. Poole, D. N. Payne, J. Lightwave Technol. LT-4, 956 (1986).
[CrossRef]

Opt. Lett. (1)

Other (2)

J. T. Kringlebotn, P. R. Morkel, L. Reekie, J. L. Archambault, D. N. Payne, in Nineteenth European Conference on Optical Communication (Swiss Electrotechnical Association, Zurich, 1993), p. 65.

G. Grasso, A. Righetti, F. Fontana, in Seventeenth European Conference on Optical Communication (Impression Publi Trégor, Lannion, France, 1991), p. 149.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Two-mirror and (b) three-mirror Er:Yb phosphate-glass FFP laser configurations. MOPA, master-oscillator/power-amplifier; PZT, piezoelectric transducer.

Fig. 2
Fig. 2

Laser output power versus launched pump power of the 100- and 500-μm-long Er:Yb phosphate-glass FFP lasers. Also shown is the output power versus pump power of the 500-μm-long laser in a MOPA configuration (with a 2.5-m-long Er-doped fiber at the output).

Fig. 3
Fig. 3

4.52-nm tuning range of the 100-μm-long Er:Yb phosphate-glass FFP laser (wavelengths are displayed at nine voltages).

Fig. 4
Fig. 4

(a) Direct optical spectrum of the 100-μm-long laser at a 18-mW pump level observed by a FFP scanning interferometer. Note that the expanded lasing profile is superimposed onto the FSR of the FFP scanning interferometer. (b) Self-heterodyne measurement of the 500-μm-long laser linewidth using a 25-km delay line.

Fig. 5
Fig. 5

Laser output power versus input pump power of the three-mirror Er:Yb phosphate-glass FFP laser.

Metrics