Abstract

The threshold at which self-focusing initially dominates the dynamics of short-pulse propagation in normally dispersive bulk media, causing an explosive increase in peak intensity, is estimated analytically and verified numerically. Intensity-dependent propagation effects such as spectral broadening also occur explosively at this threshold.

© 1994 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Strickland, P. B. Corkum, Proc. Soc. Photo-Opt. Instrum. Eng. 1413, 54 (1991).
  2. J. H. Marburger, E. Dawes, Phys. Rev. Lett. 21, 556 (1968).
    [CrossRef]
  3. E. Yablonovitch, N. Bloembergen, Phys. Rev. Lett. 29, 907 (1972).
    [CrossRef]
  4. M. D. Feit, J. A. Fleck, J. Opt. Soc. Am. B 5, 633 (1988).
    [CrossRef]
  5. J. H. Marburger, W. G. Wagner, IEEE J. Quantum Electron. QE-3, 415 (1967).
    [CrossRef]
  6. Y. R. Shen, M. M. T. Loy, Phys. Rev. A 3, 2099 (1971).
    [CrossRef]
  7. X. D. Cao, C. J. McKinstrie, D. A. Russell, Bull. Phys. Soc. 36, 2273 (1991).
  8. P. Chernev, V. Petrov, Opt. Lett. 17, 172 (1992).
    [CrossRef] [PubMed]
  9. J. E. Rothenberg, Opt. Lett. 17, 583 (1992).
    [CrossRef] [PubMed]
  10. G. G. Luther, A. C. Newell, J. V. Moloney, “Effects of normal dispersion on collapse events,”Physica D (to be published).
  11. J. A. Fleck, J. R. Morris, M. D. Feit, Appl. Phys. 14, 99 (1977).
    [CrossRef]
  12. J. H. Marburger, Prog. Quantum Electron. 4, 35 (1975).
    [CrossRef]
  13. G. G. Luther, A. C. Newell, J. V. Moloney, E. M. Wright, Opt. Lett. 19, 789 (1994).
    [CrossRef] [PubMed]
  14. P. L. Kelly, Phys. Rev. Lett. 15, 1005 (1965).
    [CrossRef]
  15. M. J. Potasek, G. P. Agrawal, S. C. Pinault, J. Opt. Soc. Am. B 3, 205 (1986).
    [CrossRef]

1994

1992

1991

D. Strickland, P. B. Corkum, Proc. Soc. Photo-Opt. Instrum. Eng. 1413, 54 (1991).

X. D. Cao, C. J. McKinstrie, D. A. Russell, Bull. Phys. Soc. 36, 2273 (1991).

1988

1986

1977

J. A. Fleck, J. R. Morris, M. D. Feit, Appl. Phys. 14, 99 (1977).
[CrossRef]

1975

J. H. Marburger, Prog. Quantum Electron. 4, 35 (1975).
[CrossRef]

1972

E. Yablonovitch, N. Bloembergen, Phys. Rev. Lett. 29, 907 (1972).
[CrossRef]

1971

Y. R. Shen, M. M. T. Loy, Phys. Rev. A 3, 2099 (1971).
[CrossRef]

1968

J. H. Marburger, E. Dawes, Phys. Rev. Lett. 21, 556 (1968).
[CrossRef]

1967

J. H. Marburger, W. G. Wagner, IEEE J. Quantum Electron. QE-3, 415 (1967).
[CrossRef]

1965

P. L. Kelly, Phys. Rev. Lett. 15, 1005 (1965).
[CrossRef]

Agrawal, G. P.

Bloembergen, N.

E. Yablonovitch, N. Bloembergen, Phys. Rev. Lett. 29, 907 (1972).
[CrossRef]

Cao, X. D.

X. D. Cao, C. J. McKinstrie, D. A. Russell, Bull. Phys. Soc. 36, 2273 (1991).

Chernev, P.

Corkum, P. B.

D. Strickland, P. B. Corkum, Proc. Soc. Photo-Opt. Instrum. Eng. 1413, 54 (1991).

Dawes, E.

J. H. Marburger, E. Dawes, Phys. Rev. Lett. 21, 556 (1968).
[CrossRef]

Feit, M. D.

M. D. Feit, J. A. Fleck, J. Opt. Soc. Am. B 5, 633 (1988).
[CrossRef]

J. A. Fleck, J. R. Morris, M. D. Feit, Appl. Phys. 14, 99 (1977).
[CrossRef]

Fleck, J. A.

M. D. Feit, J. A. Fleck, J. Opt. Soc. Am. B 5, 633 (1988).
[CrossRef]

J. A. Fleck, J. R. Morris, M. D. Feit, Appl. Phys. 14, 99 (1977).
[CrossRef]

Kelly, P. L.

P. L. Kelly, Phys. Rev. Lett. 15, 1005 (1965).
[CrossRef]

Loy, M. M. T.

Y. R. Shen, M. M. T. Loy, Phys. Rev. A 3, 2099 (1971).
[CrossRef]

Luther, G. G.

G. G. Luther, A. C. Newell, J. V. Moloney, E. M. Wright, Opt. Lett. 19, 789 (1994).
[CrossRef] [PubMed]

G. G. Luther, A. C. Newell, J. V. Moloney, “Effects of normal dispersion on collapse events,”Physica D (to be published).

Marburger, J. H.

J. H. Marburger, Prog. Quantum Electron. 4, 35 (1975).
[CrossRef]

J. H. Marburger, E. Dawes, Phys. Rev. Lett. 21, 556 (1968).
[CrossRef]

J. H. Marburger, W. G. Wagner, IEEE J. Quantum Electron. QE-3, 415 (1967).
[CrossRef]

McKinstrie, C. J.

X. D. Cao, C. J. McKinstrie, D. A. Russell, Bull. Phys. Soc. 36, 2273 (1991).

Moloney, J. V.

G. G. Luther, A. C. Newell, J. V. Moloney, E. M. Wright, Opt. Lett. 19, 789 (1994).
[CrossRef] [PubMed]

G. G. Luther, A. C. Newell, J. V. Moloney, “Effects of normal dispersion on collapse events,”Physica D (to be published).

Morris, J. R.

J. A. Fleck, J. R. Morris, M. D. Feit, Appl. Phys. 14, 99 (1977).
[CrossRef]

Newell, A. C.

G. G. Luther, A. C. Newell, J. V. Moloney, E. M. Wright, Opt. Lett. 19, 789 (1994).
[CrossRef] [PubMed]

G. G. Luther, A. C. Newell, J. V. Moloney, “Effects of normal dispersion on collapse events,”Physica D (to be published).

Petrov, V.

Pinault, S. C.

Potasek, M. J.

Rothenberg, J. E.

Russell, D. A.

X. D. Cao, C. J. McKinstrie, D. A. Russell, Bull. Phys. Soc. 36, 2273 (1991).

Shen, Y. R.

Y. R. Shen, M. M. T. Loy, Phys. Rev. A 3, 2099 (1971).
[CrossRef]

Strickland, D.

D. Strickland, P. B. Corkum, Proc. Soc. Photo-Opt. Instrum. Eng. 1413, 54 (1991).

Wagner, W. G.

J. H. Marburger, W. G. Wagner, IEEE J. Quantum Electron. QE-3, 415 (1967).
[CrossRef]

Wright, E. M.

Yablonovitch, E.

E. Yablonovitch, N. Bloembergen, Phys. Rev. Lett. 29, 907 (1972).
[CrossRef]

Appl. Phys.

J. A. Fleck, J. R. Morris, M. D. Feit, Appl. Phys. 14, 99 (1977).
[CrossRef]

Bull. Phys. Soc.

X. D. Cao, C. J. McKinstrie, D. A. Russell, Bull. Phys. Soc. 36, 2273 (1991).

IEEE J. Quantum Electron.

J. H. Marburger, W. G. Wagner, IEEE J. Quantum Electron. QE-3, 415 (1967).
[CrossRef]

J. Opt. Soc. Am. B

Opt. Lett.

Phys. Rev. A

Y. R. Shen, M. M. T. Loy, Phys. Rev. A 3, 2099 (1971).
[CrossRef]

Phys. Rev. Lett.

P. L. Kelly, Phys. Rev. Lett. 15, 1005 (1965).
[CrossRef]

J. H. Marburger, E. Dawes, Phys. Rev. Lett. 21, 556 (1968).
[CrossRef]

E. Yablonovitch, N. Bloembergen, Phys. Rev. Lett. 29, 907 (1972).
[CrossRef]

Proc. Soc. Photo-Opt. Instrum. Eng.

D. Strickland, P. B. Corkum, Proc. Soc. Photo-Opt. Instrum. Eng. 1413, 54 (1991).

Prog. Quantum Electron.

J. H. Marburger, Prog. Quantum Electron. 4, 35 (1975).
[CrossRef]

Other

G. G. Luther, A. C. Newell, J. V. Moloney, “Effects of normal dispersion on collapse events,”Physica D (to be published).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (1)

Fig. 1
Fig. 1

Results of numerical simulations. The filled (open) circles correspond to those simulations below (above) PTH. The solid curve displays the analytic estimate [relation (5)] for PTH as a function the dispersion parameter γ. The dashed–dotted curve gives the estimate with linear spreading, and the dashed curve gives the result with five times the linear estimate.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

2 ik ( A z + k ω A t ) + 2 A k 2 k ω 2 2 A t 2 + 2 k 2 n 2 n 0 | A | 2 A = 0 .
z SF / L DF = 0 . 367 [ ( p 1 / 2 0 . 852 ) 2 0 . 0219 ] 1 / 2 .
σ ( z ) σ ( 0 ) { 1 + ( γ β + 2 1 / 2 ) [ 4 γ β ( z / L DF ) 2 ] + ( 16 27 ) 1 / 2 [ 4 γ β ( z / L DF ) 2 ] 2 } 1 / 2 .
z NLGVD / L DF = { [ 3 . 38 + 5 . 2 ( p 2 1 ) ] 1 / 2 1 . 84 15 γ p } 1 / 2 ,
γ { [ 3 . 38 + 5 . 2 ( P TH 2 1 ) ] 1 / 2 1 . 84 } [ ( P TH 1 / 2 0 . 852 ) 2 0 . 0219 ] 2 P TH .

Metrics