Abstract

We demonstrate that separate absorption and multiplication InGaAs/InP avalanche photodiodes can work biased above the breakdown voltage and detect the arrival time of single photons with 1-ns resolution and a noise-equivalent power of 1 × 10−14 W/Hz1/2 at 150 K. We investigated the performance of various samples, cooling the detectors from different temperatures down to 50 K. These devices are suitable for the detection of short optical pulses in the near-infrared range up to a 1.55-μm wavelength, for the characterization of optical communication components, and for luminescence and radiative decay measurements.

© 1994 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Z. Cummins, E. R. Pike, Photon Correlation Spectroscopy and Velocimetry (Plenum, New York, 1977), Chap. 1, p. 20.
  2. A. W. Lightstone, R. J. McIntyre, IEEE Trans. Electron. Devices ED-28, 1210 (1981).
    [CrossRef]
  3. G. Ripamonti, M. Ghioni, A. Lacaita, J. Lightwave Technol. 8, 1278 (1990).
    [CrossRef]
  4. A. Lacaita, P. A. Francese, G. Ripamonti, S. Cova, Opt. Lett. 18, 1110 (1993).
    [CrossRef] [PubMed]
  5. A. Lacaita, P. A. Francese, F. Zappa, S. Cova, “Single-photon detection beyond 1 μm: performance of commercially available germanium photodiodes,” Appl. Opt. (to be published).
  6. B. F. Levine, C. G. Bethea, Appl. Phys. Lett. 46, 333 (1985).
    [CrossRef]
  7. P. P. Webb, W. R. Clark, Proc. Soc. Photo-Opt. Instrum. Eng. 1627, 32 (1992).
  8. A. Lacaita, M. Ghioni, F. Zappa, G. Ripamonti, S. Cova, Nucl. Instrum. Methods A 326, 290 (1993).
    [CrossRef]
  9. G. Ripamonti, A. Lacaita, Proc. Soc. Photo-Opt. Instrum. Eng. 1797, 38 (1992).

1993 (2)

A. Lacaita, M. Ghioni, F. Zappa, G. Ripamonti, S. Cova, Nucl. Instrum. Methods A 326, 290 (1993).
[CrossRef]

A. Lacaita, P. A. Francese, G. Ripamonti, S. Cova, Opt. Lett. 18, 1110 (1993).
[CrossRef] [PubMed]

1992 (2)

G. Ripamonti, A. Lacaita, Proc. Soc. Photo-Opt. Instrum. Eng. 1797, 38 (1992).

P. P. Webb, W. R. Clark, Proc. Soc. Photo-Opt. Instrum. Eng. 1627, 32 (1992).

1990 (1)

G. Ripamonti, M. Ghioni, A. Lacaita, J. Lightwave Technol. 8, 1278 (1990).
[CrossRef]

1985 (1)

B. F. Levine, C. G. Bethea, Appl. Phys. Lett. 46, 333 (1985).
[CrossRef]

1981 (1)

A. W. Lightstone, R. J. McIntyre, IEEE Trans. Electron. Devices ED-28, 1210 (1981).
[CrossRef]

Bethea, C. G.

B. F. Levine, C. G. Bethea, Appl. Phys. Lett. 46, 333 (1985).
[CrossRef]

Clark, W. R.

P. P. Webb, W. R. Clark, Proc. Soc. Photo-Opt. Instrum. Eng. 1627, 32 (1992).

Cova, S.

A. Lacaita, M. Ghioni, F. Zappa, G. Ripamonti, S. Cova, Nucl. Instrum. Methods A 326, 290 (1993).
[CrossRef]

A. Lacaita, P. A. Francese, G. Ripamonti, S. Cova, Opt. Lett. 18, 1110 (1993).
[CrossRef] [PubMed]

A. Lacaita, P. A. Francese, F. Zappa, S. Cova, “Single-photon detection beyond 1 μm: performance of commercially available germanium photodiodes,” Appl. Opt. (to be published).

Cummins, H. Z.

H. Z. Cummins, E. R. Pike, Photon Correlation Spectroscopy and Velocimetry (Plenum, New York, 1977), Chap. 1, p. 20.

Francese, P. A.

A. Lacaita, P. A. Francese, G. Ripamonti, S. Cova, Opt. Lett. 18, 1110 (1993).
[CrossRef] [PubMed]

A. Lacaita, P. A. Francese, F. Zappa, S. Cova, “Single-photon detection beyond 1 μm: performance of commercially available germanium photodiodes,” Appl. Opt. (to be published).

Ghioni, M.

A. Lacaita, M. Ghioni, F. Zappa, G. Ripamonti, S. Cova, Nucl. Instrum. Methods A 326, 290 (1993).
[CrossRef]

G. Ripamonti, M. Ghioni, A. Lacaita, J. Lightwave Technol. 8, 1278 (1990).
[CrossRef]

Lacaita, A.

A. Lacaita, M. Ghioni, F. Zappa, G. Ripamonti, S. Cova, Nucl. Instrum. Methods A 326, 290 (1993).
[CrossRef]

A. Lacaita, P. A. Francese, G. Ripamonti, S. Cova, Opt. Lett. 18, 1110 (1993).
[CrossRef] [PubMed]

G. Ripamonti, A. Lacaita, Proc. Soc. Photo-Opt. Instrum. Eng. 1797, 38 (1992).

G. Ripamonti, M. Ghioni, A. Lacaita, J. Lightwave Technol. 8, 1278 (1990).
[CrossRef]

A. Lacaita, P. A. Francese, F. Zappa, S. Cova, “Single-photon detection beyond 1 μm: performance of commercially available germanium photodiodes,” Appl. Opt. (to be published).

Levine, B. F.

B. F. Levine, C. G. Bethea, Appl. Phys. Lett. 46, 333 (1985).
[CrossRef]

Lightstone, A. W.

A. W. Lightstone, R. J. McIntyre, IEEE Trans. Electron. Devices ED-28, 1210 (1981).
[CrossRef]

McIntyre, R. J.

A. W. Lightstone, R. J. McIntyre, IEEE Trans. Electron. Devices ED-28, 1210 (1981).
[CrossRef]

Pike, E. R.

H. Z. Cummins, E. R. Pike, Photon Correlation Spectroscopy and Velocimetry (Plenum, New York, 1977), Chap. 1, p. 20.

Ripamonti, G.

A. Lacaita, M. Ghioni, F. Zappa, G. Ripamonti, S. Cova, Nucl. Instrum. Methods A 326, 290 (1993).
[CrossRef]

A. Lacaita, P. A. Francese, G. Ripamonti, S. Cova, Opt. Lett. 18, 1110 (1993).
[CrossRef] [PubMed]

G. Ripamonti, A. Lacaita, Proc. Soc. Photo-Opt. Instrum. Eng. 1797, 38 (1992).

G. Ripamonti, M. Ghioni, A. Lacaita, J. Lightwave Technol. 8, 1278 (1990).
[CrossRef]

Webb, P. P.

P. P. Webb, W. R. Clark, Proc. Soc. Photo-Opt. Instrum. Eng. 1627, 32 (1992).

Zappa, F.

A. Lacaita, M. Ghioni, F. Zappa, G. Ripamonti, S. Cova, Nucl. Instrum. Methods A 326, 290 (1993).
[CrossRef]

A. Lacaita, P. A. Francese, F. Zappa, S. Cova, “Single-photon detection beyond 1 μm: performance of commercially available germanium photodiodes,” Appl. Opt. (to be published).

Appl. Phys. Lett. (1)

B. F. Levine, C. G. Bethea, Appl. Phys. Lett. 46, 333 (1985).
[CrossRef]

IEEE Trans. Electron. Devices (1)

A. W. Lightstone, R. J. McIntyre, IEEE Trans. Electron. Devices ED-28, 1210 (1981).
[CrossRef]

J. Lightwave Technol. (1)

G. Ripamonti, M. Ghioni, A. Lacaita, J. Lightwave Technol. 8, 1278 (1990).
[CrossRef]

Nucl. Instrum. Methods A (1)

A. Lacaita, M. Ghioni, F. Zappa, G. Ripamonti, S. Cova, Nucl. Instrum. Methods A 326, 290 (1993).
[CrossRef]

Opt. Lett. (1)

Proc. Soc. Photo-Opt. Instrum. Eng. (2)

G. Ripamonti, A. Lacaita, Proc. Soc. Photo-Opt. Instrum. Eng. 1797, 38 (1992).

P. P. Webb, W. R. Clark, Proc. Soc. Photo-Opt. Instrum. Eng. 1627, 32 (1992).

Other (2)

A. Lacaita, P. A. Francese, F. Zappa, S. Cova, “Single-photon detection beyond 1 μm: performance of commercially available germanium photodiodes,” Appl. Opt. (to be published).

H. Z. Cummins, E. R. Pike, Photon Correlation Spectroscopy and Velocimetry (Plenum, New York, 1977), Chap. 1, p. 20.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic energy band diagram of the InGaAs/InP photodiodes.

Fig. 2
Fig. 2

Typical temperature dependence of the dark-counting rate. The sample was biased for 250 ns at 6 V above breakdown at a gating frequency of 1 kHz. The inset shows the dependence of the dark-counting rate at 77 K on the gating frequency at two excess bias points above breakdown.

Fig. 3
Fig. 3

Temperature dependence of the photon detection efficiency at 1.3 μm and NEP at 6 V above breakdown.

Fig. 4
Fig. 4

Detector time response to a 60-ps laser pulse at 1.3 μm. The inset shows the temperature dependence of the APD time resolution (FWHM).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

NEP = h ν η 2 n b ,

Metrics